Diffusivities and atomic mobilities in bcc Ti–V–Mo alloys
Tài liệu tham khảo
Banerjee, 2013, Perspectives on titanium science and technology, Acta Mater., 61, 844, 10.1016/j.actamat.2012.10.043
Tan, 2019, CALPHAD assessment of bio-oriented Ti–Zr–Sn system and experimental validation in Ti/Zr-rich alloys, Calphad, 67, 10.1016/j.calphad.2019.101686
Lavisse, 2022, Tracking the role of nitrogen in the improvement of the high temperature oxidation resistance of titanium by mechanical treatments, Corrosion Sci., 197, 10.1016/j.corsci.2021.110080
Zhang, 2022, Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy, Nat. Commun., 13, 5966, 10.1038/s41467-022-33710-1
Li, 2022, Flow behavior analysis and prediction of flow instability of a lamellar TA10 titanium alloy, Mater. Char., 194, 10.1016/j.matchar.2022.112403
Liu, 2011, Effects of sealing process on corrosion resistance and roughness of anodic films of titanium alloy Ti-10V-2Fe-3Al, J. Cent. South Univ., 18, 1795, 10.1007/s11771-011-0904-2
Yu, 2022, High strength and toughness of Ti–6Al–4V sheets via cryorolling and short-period annealing, Mater. Sci. Eng., 854, 10.1016/j.msea.2022.143766
Pang, 2022, Enhanced strength-ductility synergy in laser additive manufactured TC4 titanium alloy by grain refinement, Mater. Lett., 326, 10.1016/j.matlet.2022.132949
Zhu, 2016, Wear resistance of TC4 by deformation accelerated plasma nitriding at 400 degrees C, J. Cent. South Univ., 23, 2771, 10.1007/s11771-016-3339-y
Liu, 2003, Microstructures and mechanical behavior of PM Ti-Mo alloy, J. Cent. South Univ., 10, 81, 10.1007/s11771-003-0043-5
Gao, 2022, Diffusivities and atomic mobilities in BCC Ti-Rich Ti-V-Cr ternary alloys, Calphad, 76, 10.1016/j.calphad.2022.102399
Zhou, 2023, Diffusion coefficient measurement and atomic mobility assessment for bcc Ti–V–Fe ternary alloys, Calphad, 82, 10.1016/j.calphad.2023.102578
Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys, Calphad, 64, 160, 10.1016/j.calphad.2018.12.003
Zhao, 2023, Evaluation of wear mechanism between TC4 titanium alloys and self-lubricating fabrics, Wear, 512–513
Bolzoni, 2022, Effect of combined lean additions of isomorphous and eutectoid beta stabilisers on the properties of titanium, J. Mater. Res. Technol., 21, 3828, 10.1016/j.jmrt.2022.11.023
Li, 2021, Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer, J. Mater. Sci. Technol., 79, 191, 10.1016/j.jmst.2020.11.050
Jia, 2023, Hot and cold rolling of a novel near-α titanium alloy: mechanical properties and underlying deformation mechanism, Mater. Sci. Eng., 863, 10.1016/j.msea.2022.144543
Wu, 2021, Hot compression deformation behaviors and processing map of new-type Ti-V-Mo based alloy, Rare Met. Mater. Eng., 50, 2061
wei, 2023, Ultrahigh coercivity and excellent thermal stability of hot-deformed Nd-Fe-B magnets by the diffusion of (Pr,Nd)-Dy-Cu-Al, J. Alloys Compd., 960, 10.1016/j.jallcom.2023.170756
Yan, 2019, Enhanced magnetic properties and improving thermal stability for sintered Nd-Fe-B magnets prepared by two-step grain boundary diffusion processes, J. Magn. Magn Mater., 491, 10.1016/j.jmmm.2019.165541
Guo, 2023, Electromigration-enhanced Kirkendall effect of Cu/Ti direct diffusion welding by sparking plasma sintering, J. Mater. Process. Technol., 315, 10.1016/j.jmatprotec.2023.117933
Yu, 2023, Element diffusion and microstructure evolution at interface of stainless steel/Ti alloy joint by laser welding with AgCuTi filler metal, J. Mater. Res. Technol., 24, 6463, 10.1016/j.jmrt.2023.04.217
Feng, 2009, Kinetics of nickel leaching from roasting-dissolving residue of spent catalyst with sulfuric acid, J. Cent. South Univ., 16, 410, 10.1007/s11771-009-0069-4
Hu, 2016, CALPHAD-type thermodynamic assessment of the Ti–Mo–Cr–V quaternary system, Calphad, 55, 103, 10.1016/j.calphad.2016.08.003
Lee, 2000, Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region, J. Alloys Compd., 297, 231, 10.1016/S0925-8388(99)00557-5
Enomoto, 1992, The Mo-Ti-V system (Molybdenum-titanium-vanadium), J. Phase Equil., 13, 420, 10.1007/BF02674990
Zheng, 1999, Thermodynamic computation of the Mo-V binary phase diagram, J. Phase Equil., 20, 370, 10.1361/105497199770340897
Shim, 1996, A thermodynamic evaluation of the Ti-Mo-C system, Metall. Mater. Trans. B, 27, 955, 10.1007/s11663-996-0009-8
Murray, 1981, The Ti−V (Titanium-Vanadium) system, Bull. Alloy Phase Diagr., 2, 48, 10.1007/BF02873703
Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8
Murdock, 1964, Diffusion of Ti44 and V48 in titanium, Acta Metall., 12, 1033, 10.1016/0001-6160(64)90075-6
Neumann, 2011
Gibbs, 1963, Diffusion in titanium and titanium—niobium alloys, Philos. Mag. A, 8, 1269, 10.1080/14786436308207292
Thibon, 1998, Interdiffusion in the β Mo–Ti solid solution at high temperatures, Int. J. Mater. Res., 89, 187
Liu, 2009, Computational study of mobilities and diffusivities in bcc Ti-Zr and bcc Ti-Mo alloys, J. Phase Equilibria Diffus., 30, 334, 10.1007/s11669-009-9557-3
Murdock, 1968, Self-diffusion in body-centered cubic titanium-vanadium alloys, Acta Mater., 16, 493, 10.1016/0001-6160(68)90123-5
Ghosh, 2002, Thermodynamic and kinetic modeling of the Cr-Ti-V system, J. Phase Equil., 23, 310, 10.1361/105497102770331569
Liu, 2009, Assessment of the diffusional mobilities in bcc Ti–V alloys, J. Alloys Compd., 470, 176, 10.1016/j.jallcom.2008.02.111
Neumann, 2008
Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1
Kirkaldy, 1957, Diffusion in multicomponent metallic systems, Can. J. Phys., 35, 435, 10.1139/p57-047
Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1
Dayananda, 1983, An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion, Metall. Trans. A, 14, 1851, 10.1007/BF02645555
Hall, 1953, An analytical method of calculating variable diffusion coefficients, J. Chem. Phys., 21, 87, 10.1063/1.1698631
Andersson, 1992, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., 72, 1350, 10.1063/1.351745
Zhong, 2022, Recommendations for simplified yet robust assessments of atomic mobilities and diffusion coefficients of ternary and multicomponent solid solutions, Scripta Mater., 207, 10.1016/j.scriptamat.2021.114227
Liu, 2021, Comments on “Thermodiffusion: the physico-chemical mechanics view”, J. Chem. Phys., 154
Liu, 2022, Theory of cross phenomena and their coefficients beyond Onsager theorem, Mater. Res. Lett., 10, 393, 10.1080/21663831.2022.2054668
Jönsson, 1994, Assessment of the mobility of carbon in fee C-Cr-Fe-Ni alloys, Int. J. Mater. Res., 85, 502, 10.1515/ijmr-1994-850708
Redlich, 1948, Thermodynamics of nonelectrolyte solutions - x-y-t relations in a binary system, Ind. Eng. Chem. Res., 40, 341, 10.1021/ie50458a035
Nikitin, 2009, Symmetries and modelling functions for diffusion processes, J. Phys. Appl. Phys., 42, 10.1088/0022-3727/42/5/055301
Li, 2011, Assessment of diffusion mobility for the bcc phase of the Ti–Al–Cr system, Calphad, 35, 384, 10.1016/j.calphad.2011.05.006
Bai, 2022, Diffusivities and atomic mobilities in bcc Ti–Mo–Ta alloys, Calphad, 76, 10.1016/j.calphad.2022.102393