Diffusivities and atomic mobilities in bcc Ti–V–Mo alloys

Hongyu Zhang1, Ning Gao1, Weimin Bai2, Maohua Rong3, Jiang Wang3, Ligang Zhang1, Libin Liu1
1School of Materials Science and Engineering, Central South University, Changsha 410083, China
2School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
3School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

Tài liệu tham khảo

Banerjee, 2013, Perspectives on titanium science and technology, Acta Mater., 61, 844, 10.1016/j.actamat.2012.10.043 Tan, 2019, CALPHAD assessment of bio-oriented Ti–Zr–Sn system and experimental validation in Ti/Zr-rich alloys, Calphad, 67, 10.1016/j.calphad.2019.101686 Lavisse, 2022, Tracking the role of nitrogen in the improvement of the high temperature oxidation resistance of titanium by mechanical treatments, Corrosion Sci., 197, 10.1016/j.corsci.2021.110080 Zhang, 2022, Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy, Nat. Commun., 13, 5966, 10.1038/s41467-022-33710-1 Li, 2022, Flow behavior analysis and prediction of flow instability of a lamellar TA10 titanium alloy, Mater. Char., 194, 10.1016/j.matchar.2022.112403 Liu, 2011, Effects of sealing process on corrosion resistance and roughness of anodic films of titanium alloy Ti-10V-2Fe-3Al, J. Cent. South Univ., 18, 1795, 10.1007/s11771-011-0904-2 Yu, 2022, High strength and toughness of Ti–6Al–4V sheets via cryorolling and short-period annealing, Mater. Sci. Eng., 854, 10.1016/j.msea.2022.143766 Pang, 2022, Enhanced strength-ductility synergy in laser additive manufactured TC4 titanium alloy by grain refinement, Mater. Lett., 326, 10.1016/j.matlet.2022.132949 Zhu, 2016, Wear resistance of TC4 by deformation accelerated plasma nitriding at 400 degrees C, J. Cent. South Univ., 23, 2771, 10.1007/s11771-016-3339-y Liu, 2003, Microstructures and mechanical behavior of PM Ti-Mo alloy, J. Cent. South Univ., 10, 81, 10.1007/s11771-003-0043-5 Gao, 2022, Diffusivities and atomic mobilities in BCC Ti-Rich Ti-V-Cr ternary alloys, Calphad, 76, 10.1016/j.calphad.2022.102399 Zhou, 2023, Diffusion coefficient measurement and atomic mobility assessment for bcc Ti–V–Fe ternary alloys, Calphad, 82, 10.1016/j.calphad.2023.102578 Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys, Calphad, 64, 160, 10.1016/j.calphad.2018.12.003 Zhao, 2023, Evaluation of wear mechanism between TC4 titanium alloys and self-lubricating fabrics, Wear, 512–513 Bolzoni, 2022, Effect of combined lean additions of isomorphous and eutectoid beta stabilisers on the properties of titanium, J. Mater. Res. Technol., 21, 3828, 10.1016/j.jmrt.2022.11.023 Li, 2021, Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer, J. Mater. Sci. Technol., 79, 191, 10.1016/j.jmst.2020.11.050 Jia, 2023, Hot and cold rolling of a novel near-α titanium alloy: mechanical properties and underlying deformation mechanism, Mater. Sci. Eng., 863, 10.1016/j.msea.2022.144543 Wu, 2021, Hot compression deformation behaviors and processing map of new-type Ti-V-Mo based alloy, Rare Met. Mater. Eng., 50, 2061 wei, 2023, Ultrahigh coercivity and excellent thermal stability of hot-deformed Nd-Fe-B magnets by the diffusion of (Pr,Nd)-Dy-Cu-Al, J. Alloys Compd., 960, 10.1016/j.jallcom.2023.170756 Yan, 2019, Enhanced magnetic properties and improving thermal stability for sintered Nd-Fe-B magnets prepared by two-step grain boundary diffusion processes, J. Magn. Magn Mater., 491, 10.1016/j.jmmm.2019.165541 Guo, 2023, Electromigration-enhanced Kirkendall effect of Cu/Ti direct diffusion welding by sparking plasma sintering, J. Mater. Process. Technol., 315, 10.1016/j.jmatprotec.2023.117933 Yu, 2023, Element diffusion and microstructure evolution at interface of stainless steel/Ti alloy joint by laser welding with AgCuTi filler metal, J. Mater. Res. Technol., 24, 6463, 10.1016/j.jmrt.2023.04.217 Feng, 2009, Kinetics of nickel leaching from roasting-dissolving residue of spent catalyst with sulfuric acid, J. Cent. South Univ., 16, 410, 10.1007/s11771-009-0069-4 Hu, 2016, CALPHAD-type thermodynamic assessment of the Ti–Mo–Cr–V quaternary system, Calphad, 55, 103, 10.1016/j.calphad.2016.08.003 Lee, 2000, Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region, J. Alloys Compd., 297, 231, 10.1016/S0925-8388(99)00557-5 Enomoto, 1992, The Mo-Ti-V system (Molybdenum-titanium-vanadium), J. Phase Equil., 13, 420, 10.1007/BF02674990 Zheng, 1999, Thermodynamic computation of the Mo-V binary phase diagram, J. Phase Equil., 20, 370, 10.1361/105497199770340897 Shim, 1996, A thermodynamic evaluation of the Ti-Mo-C system, Metall. Mater. Trans. B, 27, 955, 10.1007/s11663-996-0009-8 Murray, 1981, The Ti−V (Titanium-Vanadium) system, Bull. Alloy Phase Diagr., 2, 48, 10.1007/BF02873703 Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8 Murdock, 1964, Diffusion of Ti44 and V48 in titanium, Acta Metall., 12, 1033, 10.1016/0001-6160(64)90075-6 Neumann, 2011 Gibbs, 1963, Diffusion in titanium and titanium—niobium alloys, Philos. Mag. A, 8, 1269, 10.1080/14786436308207292 Thibon, 1998, Interdiffusion in the β Mo–Ti solid solution at high temperatures, Int. J. Mater. Res., 89, 187 Liu, 2009, Computational study of mobilities and diffusivities in bcc Ti-Zr and bcc Ti-Mo alloys, J. Phase Equilibria Diffus., 30, 334, 10.1007/s11669-009-9557-3 Murdock, 1968, Self-diffusion in body-centered cubic titanium-vanadium alloys, Acta Mater., 16, 493, 10.1016/0001-6160(68)90123-5 Ghosh, 2002, Thermodynamic and kinetic modeling of the Cr-Ti-V system, J. Phase Equil., 23, 310, 10.1361/105497102770331569 Liu, 2009, Assessment of the diffusional mobilities in bcc Ti–V alloys, J. Alloys Compd., 470, 176, 10.1016/j.jallcom.2008.02.111 Neumann, 2008 Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1 Kirkaldy, 1957, Diffusion in multicomponent metallic systems, Can. J. Phys., 35, 435, 10.1139/p57-047 Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1 Dayananda, 1983, An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion, Metall. Trans. A, 14, 1851, 10.1007/BF02645555 Hall, 1953, An analytical method of calculating variable diffusion coefficients, J. Chem. Phys., 21, 87, 10.1063/1.1698631 Andersson, 1992, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., 72, 1350, 10.1063/1.351745 Zhong, 2022, Recommendations for simplified yet robust assessments of atomic mobilities and diffusion coefficients of ternary and multicomponent solid solutions, Scripta Mater., 207, 10.1016/j.scriptamat.2021.114227 Liu, 2021, Comments on “Thermodiffusion: the physico-chemical mechanics view”, J. Chem. Phys., 154 Liu, 2022, Theory of cross phenomena and their coefficients beyond Onsager theorem, Mater. Res. Lett., 10, 393, 10.1080/21663831.2022.2054668 Jönsson, 1994, Assessment of the mobility of carbon in fee C-Cr-Fe-Ni alloys, Int. J. Mater. Res., 85, 502, 10.1515/ijmr-1994-850708 Redlich, 1948, Thermodynamics of nonelectrolyte solutions - x-y-t relations in a binary system, Ind. Eng. Chem. Res., 40, 341, 10.1021/ie50458a035 Nikitin, 2009, Symmetries and modelling functions for diffusion processes, J. Phys. Appl. Phys., 42, 10.1088/0022-3727/42/5/055301 Li, 2011, Assessment of diffusion mobility for the bcc phase of the Ti–Al–Cr system, Calphad, 35, 384, 10.1016/j.calphad.2011.05.006 Bai, 2022, Diffusivities and atomic mobilities in bcc Ti–Mo–Ta alloys, Calphad, 76, 10.1016/j.calphad.2022.102393