Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31

Elsevier BV - Tập 105 - Trang 120-127 - 2012
Kuei-Ling Yeh1, Jo-Shu Chang1,2,3
1Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
2University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
3Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan

Tài liệu tham khảo

Bashan, 2011, Heterotrophic cultures of microalgae: metabolism and potential products, Water Res., 45, 11, 10.1016/j.watres.2010.08.037 Carioca, 2010, Biofuels: problems, challenges and perspectives, Biotechnol. J., 5, 260, 10.1002/biot.200900137 Chen, 2011, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 71, 10.1016/j.biortech.2010.06.159 Chen, 2010, Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate, Biotechnol. Progr., 26, 679, 10.1002/btpr.381 Cheng, 2009, Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides, J. Chem. Technol. Biotechnol, 84, 777, 10.1002/jctb.2111 Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001 Chisti, 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002 Chiu, 2008, Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor, Bioresour. Technol., 99, 3389, 10.1016/j.biortech.2007.08.013 Chojnacka, 2004, Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae, Biotechnology, 3, 21, 10.3923/biotech.2004.21.34 Darzins, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x DuBois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017 Fuentes, 2000, Biomass nutrient profiles of the microalga Porphyridium cruentum, Food Chem., 70, 345, 10.1016/S0308-8146(00)00101-1 Gouveia, 2009, Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production, J. Ind. Microbiol. Biotechnol., 36, 821, 10.1007/s10295-009-0559-2 Griffiths, 2009, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493, 10.1007/s10811-008-9392-7 Ho, 2010, Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates, Biochem. Eng. J., 53, 57, 10.1016/j.bej.2010.09.006 Hsieh, 2009, Cultivation of microalgae for oil production with a cultivation strategy of urea limitation, Bioresour. Technol., 100, 3921, 10.1016/j.biortech.2009.03.019 Huang, 2010, Biodiesel production by microalgal biotechnology, Appl. Energy, 87, 38, 10.1016/j.apenergy.2009.06.016 Illman, 2000, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631, 10.1016/S0141-0229(00)00266-0 Ip, 2005, Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark, Process Biochem., 40, 733, 10.1016/j.procbio.2004.01.039 Li, 2008, Perspectives of microbial oils for biodiesel production, Appl. Microbiol. Biotechnol., 80, 749, 10.1007/s00253-008-1625-9 Li, 2007, Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors, Biotechnol. Bioeng., 98, 764, 10.1002/bit.21489 Liang, 2009, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett., 31, 1043, 10.1007/s10529-009-9975-7 Mata, 2010, Microalgae for biodiesel production and other applications: a review, Renew. Sustainable Energy Rev., 14, 217, 10.1016/j.rser.2009.07.020 Neilson, 1974, The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry∗, Phycologia, 13, 227, 10.2216/i0031-8884-13-3-227.1 Ohlrogge, 1995, Lipid biosynthesis, Plant Cell, 7, 957, 10.1105/tpc.7.7.957 Posten, 2009, Microalgae and terrestrial biomass as source for fuels-A process view, J. Biotechnol., 142, 64, 10.1016/j.jbiotec.2009.03.015 Sheehan, 1998 Shi, 1997, Heterotrophic production of lutein by selected Chlorella strains, J. Appl. Phycol., 9, 445, 10.1023/A:1007938215655 Solovchenko, 2008, Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa, J. Appl. Phycol., 20, 245, 10.1007/s10811-007-9233-0 Spolaore, 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87, 10.1263/jbb.101.87 Su, 2007, A novel approach for medium formulation for growth of a microalga using motile intensity, Bioresour. Technol., 98, 3012, 10.1016/j.biortech.2006.10.027 Xiong, 2008, High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production, Appl. Microbiol. Biotechnol., 78, 29, 10.1007/s00253-007-1285-1 Yeesang, 2011, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour. Technol., 102, 3034, 10.1016/j.biortech.2010.10.013 Yeh, K.-L., Chang, J.-S., 2011. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol. J. doi:10.1002/biot.201000433. Yeh, 2010, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31, Eng. Life Sci., 10, 201, 10.1002/elsc.200900116