Relict landslide development as inferred from speleothem deformation, tectonic data, and geoelectrics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agliardi, 2001, Structural constraints on deep-seated slope deformation kinematics, Eng. Geol., 59, 83, 10.1016/S0013-7952(00)00066-1
Angelier, 1977, Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits, Bull. Soc. Geol. Fr., 7, 1309, 10.2113/gssgfbull.S7-XIX.6.1309
Bábek, 2015, Pleistocene speleothem fracturing in the foreland of the Western Carpathians: a case study from the seismically active eastern margin of the Bohemian Massif, Geol. Q., 59, 491
Ballantyne, 2013, Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands, Geomorphology, 186, 150, 10.1016/j.geomorph.2012.12.030
Baroň, 2013, Paleostress analysis of a gigantic gravitational mass movement in active tectonic setting: the Qoshadagh slope failure, Ahar, NW Iran, Tectonophysics, 605, 70, 10.1016/j.tecto.2013.07.020
Baroň, 2017, Stress field reconstruction in an active mudslide, Geomorphology, 289, 170, 10.1016/j.geomorph.2017.04.020
Becker, 2006, Speleoseismology: a critical perspective, J. Seismol., 10, 371, 10.1007/s10950-006-9017-z
Binley, 2005, DC resistivity and induced polarization methods, Hydrogeophysics, 50, 129, 10.1007/1-4020-3102-5_5
Briestenský, 2014, The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Západní Cave, Czech Republic, Acta Carsologica, 43, 129, 10.3986/ac.v43i1.626
Camelbeeck, 2012, Observation and interpretation of fault activity in the Rochefort cave (Belgium), Tectonophysics, 581, 48, 10.1016/j.tecto.2011.09.027
Cegrell, 2008
Cheng, 2013, Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sci. Lett., 371–372, 82, 10.1016/j.epsl.2013.04.006
Crosta, 1996, Landslide, spreading, deep seated gravitational deformation: analysis, examples, problems and proposals, Geogr. Fis. e Din. Quat., 19, 297
Cruz, 2005, Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil, Nature, 434, 63, 10.1038/nature03365
Delvaux, 1993, The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones, Terra Nova, 5, 216
Duliński, 1989, Najnowsze wyniki datowań 230Th/234U oraz analiz koncentracji izotopów stabilnych w naciekach kalcytowych z jaskiń południowo-centralnej Polski, Geochronometria, 6, 265
Fairchild, 2012
Frisia, 2015, Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies, Int. J. Speleol., 44, 1
González, 1992, Inorganic calcite morphology: roles of fluid chemistry and fluid flow, J. Sediment. Petrol., 62, 382
Griffiths, 1993, Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophys., 29, 211, 10.1016/0926-9851(93)90005-J
Grodzicki, 2002
Grodzicki, 1989, Tectonics of the Czerwone Wierchy Massif in the light of observations in caves, Ann. Soc. Geol. Pol., 59, 257
Hellstrom, 2003, Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS, J. Anal. At. Spectrom., 18, 1346, 10.1039/b308781f
Hercman, 2000, Reconstruction of palaeoclimatic changes in Central Europe between 10 and 200 thousand years BP based on analysis of growth frequency of speleothems, Studia Quaternaria, 17, 35
Hercman, 1998, Development of Szczelina Chochołowska Cave (Western Tatra Mts.), based on uranium-series dating of speleothems, Stud. Geol. Pol., 113, 85
Hók, 2016, A seismic source zone model for the seismic hazard assessment of Slovakia, Geol. Carpathica, 67, 273, 10.1515/geoca-2016-0018
Holden, 1990, Total half-lives for selected nuclides, Pure Appl. Chem., 62, 941, 10.1351/pac199062050941
Husein, 2010, Paleostress analysis to interpret the landslide mechanism: a case study in Parangtritis, Yogyakarta, Journal of Southeast Asian Applied Geology, 2, 104
Ivanovich, 1992, Uranium series disequilibrium applications in geochronology, 62
Jaffey, 1971, Precision measurements of half-lives and specific activities of 235U and 238U, Physical Reviews, C, 4, 1889, 10.1103/PhysRevC.4.1889
Jongmans, 2007, Geophysical investigation of landslides: a review, Bull. la Soc. Geol. Fr., 178, 101, 10.2113/gssgfbull.178.2.101
Jurewicz, 2005, Geodynamic evolution of the Tatra Mts. And the Pieniny Klippen Belt (Western Carpathians): problems and comments, Acta Geol. Pol., 55, 295
Kagan, 2005, Dating large infrequent earthquakes by damaged cave deposits, Geology, 33, 261, 10.1130/G21193.1
Kaufman, 1965, Comparison of 230Th and 14C ages for carbonate materials from Lakes Lahontan and Bonneville, J. Geophys. Res., 70, 4039, 10.1029/JZ070i016p04039
Keefer, 1984, Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95, 406, 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
Kemna, 2000, Complex resistivity tomography for environmental applications, Chem. Eng. J., 7, 711
Kicińska, 2017, Evolution of the Bystrej Valley caves (Tatra Mts, Poland) based on corrosive forms, clastic deposits and u-series speleothem dating, Ann. Soc. Geol. Pol., 87, 101
Kotarba, 1992, High-energy geomorphic events in the Polish Tatra Mountains, Geogr. Ann. Ser. A, Phys. Geogr, 74, 123, 10.1080/04353676.1992.11880356
Králiková, 2014, Cretaceous — Quaternary tectonic evolution of the Tatra Mts (Western Carpathians): constraints from structural, sedimentary, geomorphological, and fission track data, Geol. Carpathica, 65, 307, 10.2478/geoca-2014-0021
Lachniet, 2009, Climatic and environmental controls on speleothem oxygen-isotope values, Quat. Sci. Rev., 28, 412, 10.1016/j.quascirev.2008.10.021
Lindner, 2003, Outline of Quaternary glaciations in the Tatra Mts.: their development, age and limits, Geol. Q., 47, 269
Loke
Loke, 2002, A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion, J. Appl. Geophys., 49, 149, 10.1016/S0926-9851(01)00106-9
Makos, 2016, Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene, Quat. Sci. Rev., 134, 74, 10.1016/j.quascirev.2016.01.004
Margielewski, 2006, Structural control and types of movements of rock mass in anisotropic rocks: Case studies in the Polish Flysch Carpathians, Geomorphology, 77, 47, 10.1016/j.geomorph.2006.01.003
Margielewski, 2003, Crevice-type caves as initial forms of rock landslide development in the Flysch Carpathians, Geomorphology, 54, 325, 10.1016/S0169-555X(02)00375-6
Masi, 2015, Spectral induced polarization for monitoring electrokinetic remediation processes, J. Appl. Geophys., 123, 284, 10.1016/j.jappgeo.2015.08.011
McDermott, 2004, Paleo-climate reconstruction from stable isotope variations in speleothems: a review, Quat. Sci. Rev., 23, 902, 10.1016/j.quascirev.2003.06.021
Michalik, 1958
Pánek, 2015, Recent progress in landslide dating: a global overview, Prog. Phys. Geogr., 39, 137, 10.1177/0309133314550671
Pánek, 2016, Temporal behavior of deep-seated gravitational slope deformations: a review, Earth-Science Rev., 156, 14, 10.1016/j.earscirev.2016.02.007
Pánek, 2009, Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine, Geomorphology, 108, 171, 10.1016/j.geomorph.2009.01.003
Pánek, 2015, Are sackungen diagnostic features of (de)glaciated mountains?, Geomorphology, 248, 396, 10.1016/j.geomorph.2015.07.022
Pánek, 2016, Cosmogenic age constraints on post-LGM catastrophic rock slope failures in the Tatra Mountains (Western Carpathians), Catena, 138, 52, 10.1016/j.catena.2015.11.005
Pánek, 2017, Late Quaternary sackungen in the highest mountains of the Carpathians, Quat. Sci. Rev., 159, 47, 10.1016/j.quascirev.2017.01.008
Pánek, 2018, Coastal cliffs, rock-slope failures and Late Quaternary transgressions of the Black Sea along southern Crimea, Quat. Sci. Rev., 181, 76, 10.1016/j.quascirev.2017.12.004
Pangaea Scientific, 1990
Perrone, 2014, Electrical resistivity tomography technique for landslide investigation: a review, Earth-Science Rev., 135, 65, 10.1016/j.earscirev.2014.04.002
Perski, 2008, Recent tectonic activity of the Tatra Mts and Podhale (Poland) studied by InSAR and PSInSAR, Prz. Geol., 56, 1082
Plan, 2010, Neotectonic extrusion of the Eastern Alps : Constraints from U / Th dating of tectonically damaged speleothems, Geology, 38, 483, 10.1130/G30854.1
Plan, 2018, A Pleistocene landslide-dammed lake indicated by karren features (Eastern Alps, Austria), Geomorphology, 321, 60, 10.1016/j.geomorph.2018.08.005
Postpischl, 1991, Palaeoseismicity from karst sediments: the “Grotta del Cervo” cave case study (Central Italy), Tectonophysics, 10.1016/0040-1951(91)90186-V
Prager, 2008, Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas, Nat. Hazards Earth Syst. Sci., 8, 377, 10.5194/nhess-8-377-2008
Radstake, 1991, Applications of Forward Modeling Resistivity Profiles, Ground Water, 29, 13, 10.1111/j.1745-6584.1991.tb00490.x
Railsback, 2015, An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages, Quat. Sci. Rev., 111, 94, 10.1016/j.quascirev.2015.01.012
Różański, 1993, Isotopic patterns in modern global precipitation. In: climate changes in continental records, Geophys. Monograph, 78, 1
Schön, 1996
Sharma, 1997
Shen, 2002, Uranium and thorium isotopic concentration measurements by magnetic sector inductively coupled plasma mass spectrometry, Chem. Geol., 185, 165, 10.1016/S0009-2541(01)00404-1
Sumner, 1976
Szczygieł, 2015, Quaternary faulting in the Tatra Mountains, evidence from cave morphology and fault-slip analysis, Geol. Carpathica, 66, 245, 10.1515/geoca-2015-0023
Szczygieł, 2015, Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts, Poland. Ann. Soc. Geol. Pol., 85, 387
Telford, 1990
Wiejacz, 2009, Podhale, Poland, earthquake of November 30, 2004, Acta Geophys., 57, 346, 10.2478/s11600-009-0007-8
Wójcik, 1959, Młode przesunięcia tektoniczne w jaskiniach tatrzańskich, Act. Geol. Pol., 9, 319
Wójcik, 2013, Geological and geomorphological interpretation of Airborne Laser Scanning (ALS) data of the Kasprowy Wierch area (Tatra Mts.), Przegląd Geol., 61, 234
Zasadni, 2014, The Tatra Mountains during the Last Glacial Maximum, J. Maps, 10, 440, 10.1080/17445647.2014.885854