Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GSH level and Cu excess

Małgorzata Wójcik1, Bożena Pawlikowska-Pawlęga2, A. Tukiendorf1
1Department of Plant Physiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
2Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fernandes, J.C. and Henriques, F.S., Biochemical, Physiological, and Structural Effects of Excess Copper in Plants, Bot. Rev., 1991, vol. 57, pp. 246–273.

Himelblau, E. and Amasino, E.R.M., Delivering Copper within Plant Cells, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 205–210.

Schiavon, M., Zhang, L., Abdel-Ghany, S.E., Pilon, M., Malagoli, M., and Pilon-Smits, E.A.H., Variation in Copper Tolerance in Arabidopsis thaliana Accessions Columbia, Landsberg erecta and Wassilewskija, Physiol. Plant., 2007, vol. 129, pp. 342–350.

Hall, J.L., Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 2002, vol. 53, pp. 1–11.

Cobbett, C. and Goldsbrough, P., Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 159–182.

Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., and Bleeker, P.M., The Role of Phytochelatins in Constitutive and Adaptive Heavy Metal Tolerances in Hyperaccumulator and Nonhyperaccumulator Metallophytes, J. Exp. Bot., 2002, vol. 53, pp. 2381–2392.

May, M.J., Vernoux, T., Leaver, C., van Montagu, M., and Inzé, D., Glutathione Homeostasis in Plants: Implications for Environmental Sensing and Plant Development, J. Exp. Bot., 1998, vol. 49, pp. 649–667.

Howden, R., Goldsbrough, P.B., Andersen, C.R., and Cobbett, C.S., Cadmium-Sensitive cad1 Mutants of Arabidopsis thaliana Are Phytochelatin Deficient, Plant Physiol., 1995, vol. 107, pp. 1059–1066.

Xiang, C., Werner, B.L., Christensen, E.M., and Oliver, D.J., The Biological Functions of Glutathione Revisited in Arabidopsis Transgenic Plants with Altered Glutathione Levels, Plant Physiol., 2001, vol. 126, pp. 564–574.

Zhu, Y.L., Pilon-Smiths, E.A.H., Tarun, A.S., Jouanin, L., and Terry, N., Overexpression of Glutathione Synthetase in Indian Mustard Enhances Cadmium Accumulation and Tolerance, Plant Physiol., 1999, vol. 119, pp. 73–79.

Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A., and Mullineaux, P., Elevated Glutathione Biosynthetic Capacity in the Chloroplasts of Transgenic Tobacco Plants Paradoxically Causes Increased Oxidative Stress, Plant Cell, 1999, vol. 11, pp. 1277–1291.

Wójcik, M. and Tukiendorf, A., Response of Wild Type of Arabidopsis thaliana to Copper Stress, Biol. Plant., 2003, vol. 46, pp. 79–84.

Ouzounidou, G., Čiamporova, M., Moustakas, M., and Karataglis, S., Responses of Maize (Zea mays L.) Plants to Copper Stress: 1. Growth, Mineral Content and Ultrastructure of Roots, Environ. Exp. Bot., 1995, vol. 35, pp. 167–176.

Lou, L.L., Shen, Z., and Li, X., The Copper Tolerance Mechanisms of Elsholtzia haichowensis, a Plant from Copper-Enriched Soils, Environ. Exp. Bot., 2004, vol. 51, pp. 111–120.

Sánchez-Fernández, R., Fricker, M., Corben, L.B., White, N.S., Sheard, N., Leaver, C.J., van Montagu, M., Inzé, D., and May, M.J., Cell Proliferation and Hair Tip Growth in the Arabidopsis Root Are under Mechanistically Different Forms of Redox Control, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 2745–2750.

Lee, S., Moon, J.S., Ko, T.-S., Petros, D., Goldsbrough, P.B., and Korban, S.S., Overexpression of Arabidopsis Phytochelatin Synthase Paradoxically Leads to Hypersensitivity to Cadmium Stress, Plant Physiol., 2003, vol. 131, pp. 656–663.

Foyer, C.H., Lopez-Delgado, H., Dat, J.F., and Scott, I.M., Hydrogen Peroxide- and Glutathione-Associated Mechanisms of Acclimatory Stress Tolerance and Signaling, Physiol. Plant., 1997, vol. 100, pp. 241–254.

Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poething, S., Roberts, K., and Scheres, B., Cellular Organization of the Arabidopsis thaliana Root, Development, 1993, vol. 119, pp. 71–84.

Ouzounidou, G., Eleftheriou, E.P., and Karataglis, S., Ecophysiological and Ultrastructural Effects of Copper in Thlaspi ochroleucum (Cruciferae), Can. J. Bot., 1992, vol. 70, pp. 947–957.

Eleftheriou, E.P. and Karataglis, S., Ultrastructural and Morphological Characteristics of Cultivated Wheat Growing on Copper-Polluted Fields, Bot. Acta, 1989, vol. 102, pp. 134–140.

Reboredo, F. and Henriques, F., Some Observations on the Leaf Ultrastructure of Halimione portulacoides (L.) Aellen Grown in a Medium Containing Copper, J. Plant Physiol., 1991, vol. 137, pp. 717–722.

Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.-P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., van Montagu, M., Inzé, D., May, M.J., and Sung, Z.R., The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development, Plant Cell, 2000, vol. 12, pp. 97–109.

Zechmann, B., Müller, M., and Zellnig, G., Intracellular Adaptations of Glutathione Content in Cucurbita pepo L. Induced by Treatment with Reduced Glutathione and Buthionine Sulfoximine, Protoplasma, 2006, vol. 227, pp. 197–209.

De Vos, C.H.R., Vonk, M.J., Vooijs, R., and Schat, H., Glutathione Depletion due to Copper-Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene cucubalus, Plant Physiol., 1992, vol. 98, pp. 853–858.

Rauser, W.E., The Role of Glutathione in Plant Reaction and Adaptation to Excess Metals, Significance of Glutathione to Plant Adaptation to the Environment, Grill, D., et al., Eds., Dordrecht: Kluwer, 2001, pp. 123–154.

Salt, D.E., Thurman, D.A., Tomsett, A.B., and Sewell, A.K., Copper Phytochelatins of Mimulus guttatus, Proc. R. Soc. Lond. B, 1989, vol. 236, pp. 79–89.