Riemannian manifolds whose Laplacians have purely continuous spectrum

Mathematische Annalen - Tập 293 - Trang 143-161 - 1992
Harold Donnelly1, Nicola Garofalo1
1Department of Mathematics, Purdue University, West Làfayette, USA

Tài liệu tham khảo

Aronszajan, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of 2nd order. J. Math. Pures Appl.36, 235–249 (1957) Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne (Lect. Notes Math., vol. 194) Berlin Heidelberg New York: Springer 1971 Chavel, I.: Eigenvalues in Riemannian geometry. New York: Academic Press 1984 Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom.17, 15–53 (1982) Chernoff, P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.12, 401–414 (1973) Donnelly, H.: Negative curvature and embedded eigenvalues Math. Z.203, 301–308 (1990) Donnelly, H.: Embedded eigenvalues for asymptotically flat surfaces. (Preprint) Escobar, E.: On the spectrum of the Laplacian on complete Riemannian manifolds. Commun. Partial Differ. Equations11, 63–85 (1985) Greene, R., Wu, H.:C ∞ approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. Éc. Norm. Supér.12, 47–84 (1979) Greene, R., Wu, H.: Function theory on manifolds which possess a pole. (Lect. Notes Math., vol. 699) Berlin Heidelberg New York: Springer 1979 Hartman, P.: Ordinary differential equations. Boston Basel Stuttgart: Birkhäuser 1982 Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. Éc. Norm. Supér.11, 451–470 (1978) Karp, L.: Noncompact manifolds with purely continuous spectrum. Mich. Math. J.31, 339–347 (1984) Rellich, F.: Über das asymptotische Verhalten der Lösungen vonΔu+λu=0 in unendlichen Gebieten. Jahresber. Dtsch. Math.-Ver.53, 57–65 (1943) Reed, M., Simon, B.: Methods of modern mathematical physics, vol. IV. Analysis of operators. New York: Academic Press 1978 Tayoshi, T.: On the spectrum of the Laplace-Beltrami operator on a non-compact surface. Proc. Japan Acad.47, 187–189 (1971) Xavier, F.: Convexity and absolute continuity of the Laplace-Beltrami operator. Math. Ann.282, 579–585 (1988)