Quantum communications and quantum metrology in the spacetime of a rotating planet

EPJ Quantum Technology - Tập 4 - Trang 1-13 - 2017
Jan Kohlrus1, David Edward Bruschi2,3, Jorma Louko1, Ivette Fuentes1,4
1School of Mathematical Sciences, University of Nottingham, Nottingham, UK
2Racah Institute of Physics and Quantum Information Science Centre, The Hebrew University of Jerusalem, Jerusalem, Israel
3York Centre for Quantum Technologies, Department of Physics, University of York, York, UK
4Faculty of Physics, University of Vienna, Wien, Austria

Tóm tắt

We study how quantum systems that propagate in the spacetime of a rotating planet are affected by the curved background. Spacetime curvature affects wavepackets of photons propagating from Earth to a satellite, and the changes in the wavepacket encode the parameters of the spacetime. This allows us to evaluate quantitatively how quantum communications are affected by the curved spacetime background of the Earth and to achieve precise measurements of Earth’s Schwarzschild radius and equatorial angular velocity. We then provide a comparison with the state of the art in parameter estimation obtained through classical means. Satellite to satellite communications and future directions are also discussed.

Tài liệu tham khảo

Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: IEEE international conference on computers, systems and signal processing. 1984. p. 175-9. Bruschi DE, Fuentes I, Jennewein T, Razavi M. Spacetime effects on satellite-based quantum communications. Phys Rev D. 2014;90:045041. Parker L, Toms D. Quantum field theory in curved spacetime. Cambridge: Cambridge University Press; 2009. Giovanetti V, Lloyd SL, Maccone L. Advances in quantum metrology. Nat Photonics. 2011;5:222. Sabín C, Bruschi DE, Ahmadi M, Fuentes I. Phonon creation by gravitational waves. New J Phys. 2014;16:085003. Bruschi DE, Sabín C, White A, Baccetti V, Oi DKL, Fuentes I. Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New J Phys. 2014;16:053041. van Zoest T, Gaaloul N, Singh Y, Ahlers H, Herr W, Seidel ST, Ertmer W, Rasel E, Eckart M, Kajari E, Arnold S, Nandi G, Schleich WP, Walser R, Vogel A, Sengstock K, Bongs K, Lewoczko-Adamczyk W, Schiemangk M, Schuldt T, Peters A, Könemann T, Müntinga H, Lämmerzahl C, Dittus H, Steinmetz T, Hänsch TW, Reichel J. Bose-Einstein condensation in microgravity. Science. 2010;328(5985):1540-3. Bruschi DE, Datta A, Ursin R, Ralph TC, Fuentes I. Quantum estimation of the Schwarzschild spacetime parameters of the Earth. Phys Rev D. 2014;90:124001. Visser M. The Kerr spacetime: a brief introduction. arXiv:0706.0622 (2007). Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2000. Marian P, Marian TA. Uhlmann fidelity between two-mode Gaussian states. Phys Rev A. 2012;86:022340. Adesso G, Ragy S, Lee AR. Continuous variable quantum information: Gaussian states and beyond. Open Syst Inf Dyn. 2014;21(01n02):1440001. Wald RM. General relativity. Chicago: University of Chicago Press; 1984. Schrödinger E. Expanding universe. Cambridge: Cambridge University Press; 2011. de Felice F, Bini D. Classical measurements in curved space-times. Cambridge: Cambridge University Press; 2010. Chandrasekhar S. The mathematical theory of black holes. Oxford: Oxford University Press; 1983. Cramér H. Mathematical methods of statistics. Princeton: Princeton University Press; 1999. Vahlbruch H, Mehmet M, Chelkowski S, Bage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R. Observation of squeezed light with 10-dB quantum-noise reduction. Phys Rev Lett. 2008;100:033602. IERS Numerical Standards, IAG1999. http://hpiers.obspm.fr/eop-pc/models/constants.html. Schreiber KU, Klügel T, Wells J-PR, Hurst RB, Gebauer A. How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope. Phys Rev Lett. 2011;107:173904. Anderson R, Bilger HR, Stedman GE. Sagnac effect: a century of Earth-rotated interferometers. Am J Phys. 1994;62:975. Bonato C, Tomaello A, Da Deppo V, Naletto G, Villoresi P. Feasibility of satellite quantum key distribution. New J Phys. 2009;11(4):045017. Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P. Experimental satellite quantum communications. Phys Rev Lett. 2015;115:040502. Kish SP, Ralph TC. Estimating spacetime parameters with a quantum probe in a lossy environment. Phys Rev D. 2016;93:105013. Rohde PP, Ralph TC, Nielsen MA. Optimal photons for quantum-information processing. Phys Rev A. 2005;72:052332. Gibney E. Chinese satellite is one giant step for the quantum Internet. Nature. 2016;535:478-9.