Joint assessment of the latent trait dimensionality and observed differential item functioning of students’ national tests

Springer Science and Business Media LLC - Tập 50 Số 4 - Trang 1429-1447 - 2016
Michela Gnaldi1, Silvia Bacci2
1Department of Political Sciences, University of Perugia, Via A. Pascoli 20, 06123, Perugia, Italy
2Department of Economics, University of Perugia, Via A. Pascoli, 20, 06123, Perugia, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bartolucci, F.: A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika 72, 141–157 (2007)

Bartolucci, F., Bacci, S., Gnaldi, M.: MultiLCIRT: An R package for multidimensional latent class item response models. Comput. Statistics Data Anal. 71, 971–985 (2014)

Birnbaum, A.: Some latent trait models and their use in inferring an examinee’s ability. In: Lord, F.M., Novick, M.R. (eds.) Statistical Theories of Mental Test Scores, pp. 395–479. Addison-Wesley, Reading (1968)

Camilli, P., Shephard, L.A.: Methods for Identifying Biased Test Items. Sage, Thousand Oaks (1994)

Christensen, K., Bjorner, J., Kreiner, S., Petersen, J.: Testing unidimensionality in polytomous Rasch models. Psychometrika 67, 563–574 (2002)

Clauser, B., Mazor, K.M.: Using statistical procedures to identify differentially functioning test items. Educ. Meas. Issues Pract. 2, 31–44 (1998)

Cohen, A.S., Bolt, D.M.: A mixture model analysis of differential item functioning. J. Educ. Meas. 42, 133–148 (2005)

De Mars, C., Lau, A.: Differential item functioning detection with latent classes: how accurately can we detect who is responding differentially? Educ. Psychol. Meas. 71(4), 597–616 (2011)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

Formann, A.K.: Linear logistic latent class analysis and the Rasch model. In: Fischer, G., Molenaar, I. (eds.) Rasch Models: Foundations, Recent Developments, and Applications, pp. 239–255. Springer, New York (1995)

Glas, C.A.W., Verhelst, N.D.: Testing the rasch model. In: Fischer, G.H., Molenaar, I. (eds.) Rasch Models. Their foundations, Recent Developments and Applications, pp. 69–95. Springer, New York (1995)

Goodman, L.A.: Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215–231 (1974)

Hambleton, R.K., Swaminathan, H.: Item Response Theory: Principles and Applications. Kluwer Nijhoff, Boston (1985)

Holland, P.W., Thayer, D.T.: Differential item functioning and the Mantel-Haenszel procedure. In: Wainer, H., Braun, H.I. (eds.) Test Validity, pp. 129–145. Erlbaum, Hillsdale (1988)

INVALSI.: Prove invalsi 2009. In: Report, I. T. (ed.) Quadro di riferimento di Italiano. (2009a)

INVALSI.: Prove invalsi 2009. In: Report, I. T. (ed.) Quadro di riferimento di Matematica. (2009b)

Lazarsfeld, P.F., Henry, N.W.: Latent Structure Analysis. Houghton Mifflin, Boston (1968)

Lindsay, B., Clogg, C., Greco, J.: Semiparametric estimation in the rasch model and related exponential response models, including a simple latent class model for item analysis. J. Am. Stat. Assoc. 86, 96–107 (1991)

Lord, F.: Applications of Item Response Theory to Practical Testing Problems. Erlbaum, Hillsdale (1980)

Martin-Löf, P.: Statistiska Modeller. Institütet för Försäkringsmatemetik och Matematisk Statistisk vid Stockholms Universitet, Stockholm (1973)

Mazza, A., Punzo, A., McGuire, B.: Kernsmoothirt: an r package for kernel smoothing in item response theory. J. Stat. Softw. 58(6), 1–34 (2014)

Mokken, R.: A Theory and Procedure of Scale Analysis. De Gruyter, Berlin (1971)

Penfield, R. D., Camilli, G.: Differential item functioning and item bias. In: Handbook of Statistics, pp. 125–167. Elsevier, New York (2007)

Perkins, A.J., Stump, T.E., Monahan, P., McHorney, C.: Assessment of differential item functioning for demographic comparisons in the mos sf-36 health survey. Qual. Life Res. 15, 331–348 (2006)

Raju, N.: The area beetwen two item characteristic curves. Psychometrika 53, 495–502 (1988)

Rasch, G.: On general laws and the meaning of measurement in psychology. In: Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability, pp. 321–333. University of California Press, California (1961)

Sani, C., Grilli, L.: Differential variability of test scores among schools: a multilevel analysis of the fifth grade invalsi test using heteroscedastic random effects. J. Appl. Quant. Methods 6(4), 88–99 (2011)

Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

Sijtsma, K., Molenaar, I.: Introduction to Nonparametric Item Response Theory. Sage, Thousand Oaks (2002)

Stout, W.: A non parametric approach for assessing latent trait unidimensionality. Psychometrika 52(4), 589–617 (1987)

Swaminathan, H., Rogers, H.: Detecting differential item functioning using logistic regression procedures. J. Educ. Meas. 27, 361–370 (1990)

Thissen, D., Steinberg, L., Wainer, H.: Use of item response theory in the study of group differences in trace lines. In: Wainer, H., Braun, H.I. (eds.) Test Validity, pp. 147–169. Erlbaum, Hillsdale (1988)

Thissen, D., Steinberg, L., Wainer, H.: Detection of differential item functioning using the parameters of item response models. In: Holland, P., Wainer, H. (eds.) Differential Item Functioning, pp. 67–113. Lawrence Erlbaum Associates, Hillsdale (1993)

Vermunt, J.: The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Appl. Psychol. Meas. 25, 283–294 (2001)

Wirth, R., Edwards, M.: Item factor analysis: current approaches and future directions. Psychol. Methods 12(1), 58–79 (2007)

Zhang, J., Stout, W.: Conditional covariance structure of generalized compensatory multidimensional item. Psychometrika 64(2), 129–152 (1999a)

Zhang, J., Stout, W.: The theoretical detect index of dimensionality and its application to approximate simple structure. Psychometrika 64(2), 213–249 (1999b)