Influence of RRA Treatment on the Microstructure and Stress Corrosion Cracking Behavior of the Spray-Formed 7075 Alloy
Tóm tắt
Từ khóa
Tài liệu tham khảo
T. Hu, K. Ma, T. D. Topping, J. M. Schoenung, and E. J. Lavernia, “Precipitation phenomena in an ultrafine-grained Al alloy,” Acta Mater., 61, 2163–2178 (2013).
S. L. George and R. D. Knutsen, “Composition segregation in semi-solid metal cast AA7075 aluminum alloy,” J. Mater. Sci., 47, 4716–4725 (2012).
T. Marlaud, A. Deschamps, F. Bley, et al., “Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys,” Acta Mater., 58, 248–260 (2010).
T. Marlaud, A. Deschamps, F. Bley, et al., “Evolution of precipitate microstructures during the retrogression and re-aging heat treatment of an Al–Zn–Mg–Cu alloy,” Acta Mater., 58, 4814–4826 (2010).
R. M. Su, Y. D. Qu, R. X. Li, and R. D. Li, “Study of aging treatment on spray forming Al–Zn–Mg–Cu alloy,” Appl. Mech. Mater., 217, 1835–1838 (2012).
M. Jeyakumar, S. Kumar, and G. S. Gupta, “Microstructure and properties of the spray-formed and extruded 7075 Al alloy,” Mater. Manuf. Proc., 25, 777–785 (2010).
G. Silva, B. Rivolta, R. Gerosa, and U. Derudi, “Study of the SCC behavior of 7075 aluminum alloy after one-step aging at 163°C,” J. Mater. Eng. Perform., 22, 210–214 (2013).
R. E. Ricker, E. U. Lee, R. Taylor, et al., “Chloride ion activity and susceptibility of Al alloys 7075-T6 and 5083-H131 to stress corrosion cracking,” Metall. Mater. Trans. A, 44, 1353–1364 (2013).
G. Zhang, Z. Chen, X. Zhu, et al., “The heat treatment behavior of super-high strength aluminum alloys by spray forming,” J. Mater. Sci. Chem. Eng., 1, 57–60 (2013).
H. Fooladfar, B. Hasnemi, and M. Younesi, “The effect of the surface treating and high-temperature aging on the strength and SCC susceptibility of 7075 aluminum alloy,” J. Mater. Eng. Perform., 19, 852–859 (2010).
E. M. Arnold, J. J. Schubbe, P. J. Moran, and R. A. Bayles, “Comparison of SCC thresholds and environmentally assisted cracking in 7050-T7451 aluminum plate,” J. Mater. Eng. Perform., 21, 2480–2486 (2012).
B. M. Cina, U. S. Patent 3856584. Reducing the Susceptibility of Alloys, Particularly Aluminum Alloys, to Stress Corrosion Cracking, (1974).
Y. Reda, R. Abdel-Karim, and I. Elmahallawi, “Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and re-aging,” Mater. Sci. Eng. A, 485, 468–475 (2008).
G. Peng, K. Chen, S. Chen, and H. Fang, “Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng. A, 528, 4014–4018 (2011).
R. M. Su, Y. D. Qu, and R. D. Li, “Effect of aging treatments on the mechanical and corrosive behaviors of spray-formed 7075 alloy,” J. Mater. Eng. Perform., 23, 3842–3848 (2014).
R. M. Su, Y. D. Qu, R. D. Li, et al., “Effect of aging treatments on microstructure and exfoliation corrosion behavior of spray forming 7075 alloy,” Adv. Mater. Res., 774, 872–875 (2013).
T. Ohnishi, Y. Ibaraki, and T. Ito, “Improvement of fracture toughness in 7475 aluminum alloy by the RRA (retrogression and reaging) process,” Mater. Trans. JIM, 30, 601–607 (1989).
K. Higashi, T. Ohnishi, and I. Tsukuda, U. S. Patent 4713216 K. Aluminum Alloys Having High Strength and Resistance to Stress and Corrosion (1987).
J. Lin, and M. M. Kersker, U. S. Patent 5108520J. Heat Treatment of Precipitation Hardening Alloy (1992).
X. L. Han, B. Q. Xiong, Y. A. Zhang, et al., “Triple over-aging treatment of 7150 aluminum alloy,” Chin. J. Nonferrous Met., 22, 3006–3014 (2012).
X. J. Wu, M. D. Raizenne, R. T. Holt, et al., “Thirty years of retrogression and re-aging (RRA),” Can. Aeron. Space J., 47, No. 3, 131–138 (2001).
F. X. Song, X. M. Zhang, S. D. Liu, et al., “Effect of aging on corrosion resistance of 7050 aluminum alloy pre-stretching plate,” Chin. J. Nonferrous Met., 23, 645–651 (2013).
D. Wang, D. R. Ni, and Z. Y. Ma, “Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy,” Mater. Sci. Eng. A, 494, 360–366 (2008).
