BLEDNet: Bio-inspired lightweight neural network for edge detection

Engineering Applications of Artificial Intelligence - Tập 124 - Trang 106530 - 2023
Zhengqiao Luo1, Chuan Lin1,2, Fuzhang Li1, Yongcai Pan1
1School of Automation, Guangxi University of Science and Technology, Liuzhou, 545006, People’s Republic of China
2Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, People’s Republic of China

Tài liệu tham khảo

Akbarinia, 2018, Feedback and surround modulated boundary detection, Int. J. Comput. Vis., 126, 1367, 10.1007/s11263-017-1035-5 Arbelaez, 2010, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 33, 898, 10.1109/TPAMI.2010.161 Ardhy, F., Hariadi, F.I., 2016. Development of SBC based machine-vision system for PCB board assembly automatic optical inspection. In: Paper Presented At the 2016 International Symposium on Electronics and Smart Devices. ISESD. Baltierra, 2022, A proposal of edge detection in images with multiplicative noise using the ant colony system algorithm, Eng. Appl. Artif. Intell., 110, 10.1016/j.engappai.2022.104715 Bertasius, G., Shi, J., Torresani, L., 2015. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Bertasius, G., Shi, J., Torresani, L., 2016. Semantic segmentation with boundary neural fields. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 679, 10.1109/TPAMI.1986.4767851 Cao, 2020, Learning crisp boundaries using deep refinement network and adaptive weighting loss, IEEE Trans. Multimed., 23, 761, 10.1109/TMM.2020.2987685 Chen, 2022, DPED: Bio-inspired dual-pathway network for edge detection, Front. Bioeng. Biotechnol., 10, 10.3389/fbioe.2022.1008140 Dai, 2021, Edge-guided composition network for image stitching, Pattern Recognit., 118, 10.1016/j.patcog.2021.108019 Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: Paper Presented At the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR’05. Deng, R., Liu, S., 2020. Deep structural contour detection. In: Paper Presented At the Proceedings of the 28th ACM International Conference on Multimedia. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X., 2018. Learning to predict crisp boundaries. In: Paper Presented At the Proceedings of the European Conference on Computer Vision. ECCV. Desimone, 1985, Contour, color and shape analysis beyond the striate cortex, Vis. Res., 25, 441, 10.1016/0042-6989(85)90069-0 Dollár, 2014, Fast edge detection using structured forests, IEEE Trans. Pattern Anal. Mach. Intell., 37, 1558, 10.1109/TPAMI.2014.2377715 Foret, 2020 Grigorescu, 2003, Contour detection based on nonclassical receptive field inhibition, IEEE Trans. Image Process., 12, 729, 10.1109/TIP.2003.814250 Gupta, S., Arbelaez, P., Malik, J., 2013. Perceptual organization and recognition of indoor scenes from RGB-D images. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Gupta, S., Girshick, R., Arbeláez, P., Malik, J., 2014. Learning rich features from RGB-D images for object detection and segmentation. In: Paper Presented At the European Conference on Computer Vision. Hallman, S., Fowlkes, C.C., 2015. Oriented edge forests for boundary detection. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. He, 2015, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification He, J., Zhang, S., Yang, M., Shan, Y., Huang, T., 2019. Bi-directional cascade network for perceptual edge detection. In: Paper Presented At the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Howard, 2017 Huang, 2009, A neural contextual model for detecting perceptually salient contours, Pattern Recognit. Lett., 30, 985, 10.1016/j.patrec.2009.05.006 Hubel, 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160, 106, 10.1113/jphysiol.1962.sp006837 Kanopoulos, 1988, Design of an image edge detection filter using the Sobel operator, IEEE J. Solid-State Circuits, 23, 358, 10.1109/4.996 Kyrkou, 2013, A hardware architecture for real-time object detection using depth and edge information, ACM Trans. Embed. Comput. Syst. (TECS), 13, 1, 10.1145/2539036.2539050 Li, 2021, Color edge detection by learning classification network with anisotropic directional derivative matrices, Pattern Recognit., 118, 10.1016/j.patcog.2021.108004 Lin, 2020, Lateral refinement network for contour detection, Neurocomputing, 409, 361, 10.1016/j.neucom.2020.06.069 Liu, Y., Cheng, M.-M., Hu, X., Wang, K., Bai, X., 2017. Richer convolutional features for edge detection. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Paper Presented At the Proceedings of the IEEE/CVF International Conference on Computer Vision. Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Luo, 2020, Automated visual defect detection for flat steel surface: A survey, IEEE Trans. Instrum. Meas., 69, 626, 10.1109/TIM.2019.2963555 Mély, 2016, A systematic comparison between visual cues for boundary detection, Vis. Res., 120, 93, 10.1016/j.visres.2015.11.007 Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., et al., 2014. The role of context for object detection and semantic segmentation in the wild. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Petkov, 2007, Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition, Biol. Cybernet., 97, 423, 10.1007/s00422-007-0182-0 Prewitt, 1970, Object enhancement and extraction, Pict. Process. Psychopictorics, 10, 15 Rodieck, 1965, Quantitative analysis of cat retinal ganglion cell response to visual stimuli, Vis. Res., 5, 583, 10.1016/0042-6989(65)90033-7 Rukhovich, D., Sofiiuk, K., Galeev, D., Barinova, O., Konushin, A., 2021. Iterdet: iterative scheme for object detection in crowded environments. In: Paper Presented At the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition. SSPR. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z., 2015. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Shou, 1997 Silberman, N., Hoiem, D., Kohli, P., Fergus, R., 2012. Indoor segmentation and support inference from rgbd images. In: Paper Presented At the European Conference on Computer Vision. Sillito, 1997, Functional organization influencing neurotransmission in the lateral geniculate nucleus, Thalamus, 2, 1 Simonyan, 2014 Sobel, 1970 Spratling, 2012, Image segmentation using a sparse coding model of cortical area V1, IEEE Trans. Image Process., 22, 1631, 10.1109/TIP.2012.2235850 Su, Z., Liu, W., Yu, Z., Hu, D., Liao, Q., Tian, Q., et al., 2021. Pixel difference networks for efficient edge detection. In: Paper Presented At the Proceedings of the IEEE/CVF International Conference on Computer Vision. Tu, 2020, Edge-guided non-local fully convolutional network for salient object detection, IEEE Trans. Circuits Syst. Video Technol., 31, 582, 10.1109/TCSVT.2020.2980853 Wang, 2016, Noise-robust color edge detector using gradient matrix and anisotropic Gaussian directional derivative matrix, Pattern Recognit., 52, 346, 10.1016/j.patcog.2015.11.001 Wang, 2022, Unidirectional RGB-T salient object detection with intertwined driving of encoding and fusion, Eng. Appl. Artif. Intell., 114, 10.1016/j.engappai.2022.105162 Wang, Y., Zhao, X., Huang, K., 2017. Deep crisp boundaries. In: Paper Presented At the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. White, 2017, Superior colliculus encodes visual saliency before the primary visual cortex, Proc. Natl. Acad. Sci., 114, 9451, 10.1073/pnas.1701003114 Wu, 2022, M-FasterSeg: An efficient semantic segmentation network based on neural architecture search, Eng. Appl. Artif. Intell., 113, 10.1016/j.engappai.2022.104962 Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: Paper Presented At the Proceedings of the IEEE International Conference on Computer Vision. Yang, 2015, Boundary detection using double-opponency and spatial sparseness constraint, IEEE Trans. Image Process., 24, 2565, 10.1109/TIP.2015.2425538 Yang, 2014, Multifeature-based surround inhibition improves contour detection in natural images, IEEE Trans. Image Process., 23, 5020, 10.1109/TIP.2014.2361210 Zeng, 2011, Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions, Neurocomputing, 74, 1527, 10.1016/j.neucom.2010.12.022 Zhang, 2021, Application of binocular disparity and receptive field dynamics: A biologically-inspired model for contour detection, Pattern Recognit., 110, 10.1016/j.patcog.2020.107657 Zhang, 2017, A PCB photoelectric image edge information detection method, Optik, 144, 642, 10.1016/j.ijleo.2017.07.002 Zhong, 2021, Neural mechanism of visual information degradation from retina to V1 area, Cogn. Neurodyn., 15, 299, 10.1007/s11571-020-09599-1 Zhu, L., 2018. THOP: PyTorch-OpCounter. Retrieved from https://github.com/Lyken17/pytorch-OpCounter.