Design of New Carbon-Phenolic Ablators: Manufacturing, Plasma Wind Tunnel Tests and Finite Element Model Rebuilding

Springer Science and Business Media LLC - Tập 28 - Trang 1675-1695 - 2021
L. Paglia1, V. Genova1, J. Tirillò1, C. Bartuli1, A. Simone2, G. Pulci1, F. Marra1
1Department of Chemical Engineering, Materials, Environment, INSTM Reference Laboratory for Engineering of Surface Treatments Via Eudossiana 18, Sapienza University of Rome, Rome, Italy
2Thales Alenia Space Italia, S.da Antica Di Collegno, Turin, Italy

Tóm tắt

Ablative materials represent a widespread solution for shielding space vehicles from overheating during a reentry phase in atmosphere where the high heating fluxes and the consequent high temperatures cannot be compatible with the vehicle structure and with the safety of the payload and/or the crew. In this work, two different kinds of carbon-phenolic ablators with a density of 0.3 g/cm3 were manufactured and their mechanical and thermal properties were experimentally evaluated. The thermal protection performances of the developed ablators were assessed in a hypersonic plasma wind tunnel facility, setting representative enthalpy and heat flux conditions (6 and 13 MW/m2), consistent with atmospheric reentry missions from high energy orbits. Data of the experimental tests were compared with the results obtained by a finite element model built up for these materials with the commercial software SAMCEF Amaryllis. All results enlighten the good performances of the ablators under severe heat flux conditions and outline their operating limits.

Tài liệu tham khảo

Martin, A., Boyd, I.D.: Non-Darcian behavior of pyrolysis gas in a thermal protection system. J. Thermophys. Heat Transf. 24, 60–68 (2010). https://doi.org/10.2514/1.44103 Bianchi, D., Nasuti, F., Martelli, E.: Navier-Stokes Simulations of Hypersonic Flows with Coupled Graphite Ablation. J. Spacecr. Rockets. 47, 554–562 (2010). https://doi.org/10.2514/1.47995 Steltzner, A.D., Martin, A.M.S., Rivellini, T.P., Chen, A.: AAS 13–236 Mars Science Laboratory Entry , Descent and Landing System Overview, IEEEAC (2008) Riccio, A., Raimondo, F., Sellitto, A., Carandente, V., Scigliano, R., Tescione, D.: Optimum design of ablative thermal protection systems for atmospheric entry vehicles. Appl. Therm. Eng. 119, 541–552 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.053 Glass, D.E.: Ceramic Matrix Composite ( CMC ) Thermal Protection Systems ( TPS ) and Hot Structures for Hypersonic Vehicles. Seminar. 2682, 1–36 (2008). https://doi.org/10.2514/6.2008-2682 Bertin, J.J., Cummings, R.M.: Fifty years of hypersonics: Where we’ve been, where we’re going. Prog. Aerosp. Sci. 39, 511–536 (2003). https://doi.org/10.1016/S0376-0421(03)00079-4 Natali, M., Kenny, J.M., Torre, L.: Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. Prog. Mater. Sci. 84, 192–275 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003 Laub B., Venkatapathy, E.: Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions. In A. Wilson, editor, International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. ESA SP-544 (2003) Wernitz, R., Eichhorn, Ch., Marynowski, Th., Herdrich, G.: Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy. J SPECTROSC 2013, 1–9 (2013). https://doi.org/10.1155/2013/764321 Helber, B., Turchi, A., Scoggins, J.B., Hubin, A., Magin, T.E.: Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas. Int. J. Heat Mass Transf. 100, 810–824 (2016) Scotti, S.J.: Current Technology for Thermal Protection Systems. (1992) Tadini, P., Grange, N., Chetehouna, K., Gascoin, N., Senave, S., Reynaud, I.: Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerosp. Sci. Technol. 65, 106–116 (2017). https://doi.org/10.1016/j.ast.2017.02.011 L. Vignoles, Analytical modeling of the steady state ablation of a 3D C / C composite. 51, 2614–2627 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.008 Paglia, L., Tirillò, J., Marra, F., Bartuli, C., Simone, A., Valente, T., Pulci, G.: Carbon-phenolic ablative materials for re-entry space vehicles: Plasma wind tunnel test and finite element modeling. Mater. Des. 90, 1170–1180 (2016). https://doi.org/10.1016/j.matdes.2015.11.066 Paglia, L., Genova, V., Marra, F., Bracciale, M.P., Bartuli, C., Valente, T., Pulci, G.: Manufacturing, thermochemical characterization and ablative performance evaluation of carbon-phenolic ablative material with nano-Al2O3 addition. Polym. Degrad. Stab. 169, 108979 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.108979 Pulci, G., Tirillò, J., Marra, F., Fossati, F., Bartuli, C., Valente, T.: Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Compos. Part A Appl. Sci. Manuf. 41, 1483–1490 (2010). https://doi.org/10.1016/j.compositesa.2010.06.010 Yue Zou, Z., Qin, Y., Tian, Q., Xiong Huang, Z., Han Zhao, Z.: The influence of zirconia fibre on ablative composite materials. Plast. Rubber Compos. 48, 185–190 (2019). https://doi.org/10.1080/14658011.2019.1585099 Pulci, G., Paglia, L., Genova, V., Bartuli, C., Valente, T. Marra, F.: Low density ablative materials modified by nanoparticles addition: Manufacturing and characterization. Compos. Part A Appl. Sci. Manuf. 109, (2018). https://doi.org/10.1016/j.compositesa.2018.03.025 Reynier, P.: Survey of convective blockage for planetary entries. Acta Astronaut. 83, 175–195 (2013). https://doi.org/10.1016/j.actaastro.2012.06.016 Scoggins, J.B., Rabinovitch, J., Barros-fernandez, B., Martin, A., Lachaud, J., Jaffe, R.L., Mansour, N.N., Blanquart, G., Magin, T.E.: Thermodynamic properties of carbon – phenolic gas mixtures. Aerosp. Sci. Technol. 66, 177–192 (2017). https://doi.org/10.1016/j.ast.2017.02.025 Wright, M., Cozmuta, I., Laub, B., Chen, Y.K., Wilcoxson, W.H.: Defining Ablative Thermal Protection System Margins for Planetary Entry Vehicles, 42Nd. 1–27 (2011). https://doi.org/10.2514/6.2011-3757 Weng, H., Martin, A.: Numerical Investigation of Pyrolysis Gas Blowing Pattern and Thermal Response using Orthotropic Charring Ablative Material, 11th AIAA/ASME Jt. Thermophys. Heat Transf. Conf. 1–13 (2014). https://doi.org/10.2514/6.2014-2121 Marra, F., Pulci, G., Tirillo, J., Bartuli, C., Valente, T.: Numerical Simulation of Oxy-Acetylene Testing Procedure of Ablative Materials for Re-Entry Space Vehicles. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 225, 32–40 (2011). https://doi.org/10.1177/14644207JMDA335 Tran, H.K.: Development of Lightweight Ceramic Ablators and Arc Jet Test Results. Technical Memorandum TM-108798, NASA Ames Research Center. (1994) Tran, H.K., Johnson, C., Rasky, D., Hui, F., Hsu, M.T., Chen, T., Chen, Y., Paragas, D., Kobayashi, L.: Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions. Technical Memorandum TM 110440, NASA Ames Research Center. (1997) Dhawan, S., Vishal, M., Taploo, A.: Thermal Protection for a Re-Entry Vehicle Using Heat Ablation Process. Int. J. Sci. Res. 4, 2193–2195 (2015). https://doi.org/10.21275/v4i11.nov151618 Rivier, M., Lachaud, J., Congedo, P.M.: Ablative thermal protection system under uncertainties including pyrolysis gas composition. Aerosp. Sci. Technol. 84, 1059–1069 (2019). https://doi.org/10.1016/j.ast.2018.11.048 Auweter-Kurtz, M., Kurtz, H.L., Laure, S.: Plasma generators for re-entry simulation. J of Prop Power 12–6, 1053–1061 (1996) Ogasawara, T., Aoki, T., Hassan, M.S.A., Mizokami, Y., Watanabe, N.: Ablation behavior of SiC fiber / carbon matrix composites under simulated atmospheric reentry conditions Composites : Part A (2011). https://doi.org/10.1016/j.compositesa.2010.10.015 Pagan, A.S., Zuber, C., Massuti-Ballester, B., Herdrich, G., Hald, H., Fasoulas, S.: The Ablation Performance and Dynamics of the Heat Shield Material ZURAM®, 31st. Int. Symp. Sp. Technol. Sci. (2017) Herdrich, G., Fertig, M., Löhle, S.: Experimental Simulation of High Enthalpy Planetary Entries. The Open Journal of Plasma Physics, ISSN 2, 150–164 (2009). https://doi.org/10.2174/1876534300902010150 Wang, Y., Risch, T.K., Koo, J.H., Armstrong, N., Air, E., Base, F.: Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. Aerosp. Sci. Technol. 91, 301–309 (2019). https://doi.org/10.1016/j.ast.2019.05.039 Meurisse, J.B.E., Lachaud, J., Panerai, F., Tang, C., Mansour, N.N.: Multidimensional material response simulations of a full-scale tiled ablative heatshield. Aerosp. Sci. Technol. 76, 497–511 (2018). https://doi.org/10.1016/j.ast.2018.01.013 Paglia, L., Genova, V., Bracciale, M.P., Bartuli, C., Marra, F., Natali, M., Pulci, G.: Thermochemical characterization of polybenzimidazole with and without nano-ZrO2 for ablative materials application. JTAC (2020). https://doi.org/10.1007/s10973-020-10343-4 MacDonald, M., Jacobs, C., Sheikh, U.A., Laux, C.O., Morgan, R.: Measurements of Air Plasma/Ablator Interactions in a 50 kW Inductively Coupled Plasma Torch. J Thermophys. Heat Transfer 46, (2015) Tranchard, P., Samyn, F., Duquesne, S., Estèbe, B., Bourbigot, S.: Modelling behaviour of a carbon epoxy composite exposed to fire: Part ii-comparison with experimental results. Materials (Basel) 10, (2017). https://doi.org/10.3390/ma10050470 van Eekelen, T., Martin, A., Lachaud, J., Bianchi, D. :Test Case Series 3, 6th Ablation workshop. (2014) Dos Santos, W.N., Mummery, P., Wallwork, A.: Thermal diffusivity of polymers by the laser flash technique. Polym. Test. 24, 628–634 (2005). https://doi.org/10.1016/j.polymertesting.2005.03.007 Conshohocken, W.: Standard Test Method for Thermal Diffusivity by the Flash Method 1 i. 1–11 (2012). https://doi.org/10.1520/E1461-11.2 Torres-Herrador, F., Turchi, A., Van Geem, K.M., Blondeau, J., Magin, T.E.: Determination of heat capacity of carbon composites with application to carbon/phenolic ablators up to high temperatures. Aerosp Sci Technol 108, 1–10 (2021). https://doi.org/10.1016/j.ast.2020.106375 ASTM D7264/D726M-15.: Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. Annu B ASTM Stand i 1–11 (2010) . https://doi.org/10.1520/D7264 Büscher, M., Esser, B., Kindler, K., List, V.: Developments at the arc heated facility LBK of DLR)., Proceedings of the 2nd European Symposium Aerothermodynamics for space vehicles, ESTEC, Noordwijk, The Netherlands. 365–362 (1995) Panerai, F., Chazot, O.:, Plasmawind tunnel testing as support to the design of gas-surface interaction in-flight experiments, 17th AIAA Int. Sp. Planes Hypersonic. Syst Technol Conf 2011, (2011). https://doi.org/10.2514/6.2011-2276 Gulhan, A., Esser, B., Koch, U.: Experimental Investigation of Reentry Vehicle Aerothermodynamic Problems in Arc-Heated Facilities. J Spacecraft Rockets 38, 199–206 (2001). https://doi.org/10.2514/2.3670 Zuber, C., Reimer, T., Hesser, B., Gulhan, A., Herdrich, G., Biller, N.: Development of the Low-Density Phenolic-Based Fibrous Ablator ZURAM-K. J Spacecraft Rockets (2020). https://doi.org/10.2514/1.A34754 Löhle, S., Hermann, T., Zander, F.: Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing. CEAS Sp. J. 10, 203–211 (2018). https://doi.org/10.1007/s12567-017-0186-0 Milos, F.S., Chen, Y.K.: Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator. J Spacecraft Rockets 47, 786–805 (2010). https://doi.org/10.2514/1.42949 Wong, H.-W., Peck, J., Bonomi, R.E., Assif, J., Panerai, F., Reinisch, G., Lachaud, J., Mansour, N.N.: Quantitative determination of species production from phenol-formaldehyde resin pyrolysis. Polym. Degrad. Stab. 112, 122–131 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.12.020 Bessire, B.K., Lahankar, S.A., Minton, T.K.: Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA). Appl. Mater. Interfaces 7, 1383–1395 (2015). https://doi.org/10.1021/am507816f Torres-Herrador, F., Leroy, V., Helber, B., Contat-Rodrigo, L., Lachaud, J., Magin, T.: Multicomponent Pyrolysis Model for Thermogravimetric Analysis of Phenolic Ablators and Lignocellulosic Biomass. AIAA J. 58, 4081–4089 (2020). https://doi.org/10.2514/1.J059423 B.O. Owiti, T. Sakai, H. Kawabata, Y. Ishida, Thermal response analysis of low density ablative materials subjected to high temperature, AIAA Scitech 2019 Forum. (2019) 1–15. https://doi.org/10.2514/6.2019-1777 T. van Eekelen, J.R. Lachaud, A. Martin, I. Cozmuta, Ablation Test-Case Series #3. Numerical Simulation of Ablative-Material Response: Code and Model Comparisons, 6th Ablation Work. (2012). G. Pinaud, J.M. Bouilly, J. Barcena, S. Florez, B. Perez, W. Fisher, V. Leroy, D. Bernard, T. Massuti, G. Herdrich, others, HYDRA: Macroscopic modelling of hybrid ablative thermal protection system, 5th Int. Conf. Porous Media Its Appl. Sci. Eng. ICPM5, Kona, HI. (2014). D. F. Rogers, Laminar Flow Analysis, Cambridge University Press (1992). F. S. Milos, Y.-K. Chen, Comprehensive model for multicomponent ablation thermochemistry. 35th Aerospace Sciences Meeting & Exhibit, AIAA paper (1997), DOI: https://doi.org/10.2514/6.1997-141 R. A. Thompson, P. A. Gnoffo, Implementation of a Blowing Boundary Condition in the LAURA Code, 46th AIAA Aerospace Sciences Meeting and Exhibit (2008), DOI: https://doi.org/10.2514/6.2008-1243 Kendall R. M., Rindal R. A., An Analysis of the Chemically Reacting Boundary Layer and Charring Ablator. Part V: A General Approach to the Thermochemical Solution of Mixed Equilibrium-Nonequilibrium, Homogeneous or Heterogeneous Systems, NASA CR-1064, (1968). Chen, Y.K., Milos, F.S.: Navier-Stokes Solutions with Finite Rate Ablation for Planetary Mission Earth Reentries. J Spacecraft Rockets 42, 961–970 (2005). https://doi.org/10.2514/1.12248 D. Bianchi, E. Martelli, M. Onofri, Practical Navier-Stockes Computetion of flofield with ablation products injection, Proceedings 5th European Workshop on Thermal Protection Systems and Hot Structures, (2006). R. M. Kendall, E. P. Bartlett, R. A. Rindal, C. B. Moyer, An analysis of the coupled chemically reacting boundary layer and charring ablator: Part I. Technical Report CR 1060, NASA, 1968. Venkatapathy, E., Laub, B., Hartman, G.J., Arnold, J.O., Wright, M.J., Allen, G.A.: Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions. Examples for Saturn, Titan and Stardust-type sample return. Adv Sp Res 44, (2009) 138–150. https://doi.org/10.1016/j.asr.2008.12.023 Wernitz, R., Eichhorn, C., Herdrich, C., Fasoulas, G.S., Löhle S., Röser, H.P.: Plasma Wind Tunnel Investigation of European Ablators in Air using Emission Spectroscopy, AIAA-2011–3761, 42nd Thermophysics Conference, Honolulu, Hawaii, USA. (2011) Kubota Y, Fukuda K, Hatta H, Wernitz R, Herdrich G, Fasoulas S.: Comparison of thermal deformations of carbon fiber-reinforced phenolic matrix ablators by arc-plasma wind tunnel heating and quasi-static heating. Adv Compos Mater 24, 179–195 (2015). https://doi.org/10.1080/09243046.2014.882539