The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle
Tài liệu tham khảo
Abratis, 2001, Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm, Geology, 29, 127, 10.1130/0091-7613(2001)029<0127:RCSWFA>2.0.CO;2
Agustín-Flores, 2011, Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City, J. Volcanol. Geotherm. Res., 201, 143, 10.1016/j.jvolgeores.2010.08.010
Alvarado, 1993, Resumen cronoestratigrafico de las rocas igneas de Costa Rica basado en dataciones radiometricas, J. S. Am. Earth Sci., 6, 151, 10.1016/0895-9811(92)90005-J
Annen, 2006, The genesis of intermediate and silica magmas in deep crustal hot zones, J. Petrol., 47, 505, 10.1093/petrology/egi084
Armstrong, 1981, Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental growth Earth, Royal Society of London Philosophical Transactions, 301, 443
Armstrong, 1991, The persistent myth of crustal growth, Aust. J. Earth Sci., 38, 613, 10.1080/08120099108727995
Arndt, 1989, An open boundary between lower continental crust and mantle; its role in crust formation and crustal recycling, Tectonophysics, 161, 201, 10.1016/0040-1951(89)90154-6
Barazangi, 1976, Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, Geology, 4, 686, 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
Barcley, 2004, A hornblende basalt from Western Mexico: water-saturated phase relations constrain a pressure-temperature window of eruptibility, J. Petrol., 45, 485, 10.1093/petrology/egg091
Barker, 1995, Tectonic framework of the East Scotia Sea, 281
Barker, 1981, Back-arc extension in the Scotia Sea, Philos. Trans. R. Soc. Lond. Ser. A, 300, 249, 10.1098/rsta.1981.0063
Barreiro, 1984, Lead isotopes and Andean magmagenesis, 21
Behn, 2011, Diapirs as the source of the sediment signature in arc lavas, Nat. Geosci., 4, 641, 10.1038/ngeo1214
Benton, 2001, Boron isotope systematics of slab fluids as inferred from serpentinite seamount, Mariana forearc, Earth Planet. Sci. Lett., 187, 273, 10.1016/S0012-821X(01)00286-2
Bevis, 1984, Hypocentral trend surface analysis: probing the geometry of Benioff zones, J. Geophys. Res., 89, 6153, 10.1029/JB089iB07p06153
Bindeman, 2005, Oxygen isotope evidence for slab melting in modern and ancient subduction zones, Earth Planet. Sci. Lett., 235, 480, 10.1016/j.epsl.2005.04.014
Blatter, 1998, Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle, Geology, 26, 1035, 10.1130/0091-7613(1998)026<1035:HPXFCM>2.3.CO;2
Blatter, 2001, Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for mantle origin?, Geochim. Cosmochim. Acta, 65, 4043, 10.1016/S0016-7037(01)00708-6
Bosch, 2004, Deep and high-temperature hydrothermal circulation in the Oman ophiolite: petrological and isotopic evidence, J. Petrol., 45, 1181, 10.1093/petrology/egh010
Boschi, 2008, Isotopic and element exchange during serpentinization and metasomatism at the Atlantis massif (MAR 30°N): insights from B and Sr isotope data, Geochim. Cosmochim. Acta, 72, 1801, 10.1016/j.gca.2008.01.013
Bowen, 1928
Buchs, 2020, Long-term non-erosive nature of the south Costa Rican margin supported by arc-derived sediments accreted in the Osa Mélange, Earth Planet. Sci. Lett., 531, 10.1016/j.epsl.2019.115968
Carmichael, 2002, The andesite aqueduct: perspectives in the evolution of intermediate magmas in west-central Mexico, Contrib. Mineral. Petrol., 143, 641, 10.1007/s00410-002-0370-9
Carr, 1984, Symmetrical and segmented variation of physical and geochemical characteristics of the Central American Volcanic Front, J. Volcanol. Geotherm. Res., 20, 231, 10.1016/0377-0273(84)90041-6
Castro, 2013, Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor's andesite model, Gondwana Res., 23, 1554, 10.1016/j.gr.2012.07.004
Charrier, 1979, Edades K Ar de vulcanitas cenozoicas del sector cordillerano del río Cachapoal (34°15′), Rev. Geol. Chile, 7, 41
Charrier, 2002, Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36°S), J. S. Am. Earth Sci., 15, 117, 10.1016/S0895-9811(02)00009-3
Chauvel, 2008, Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array, Nat. Geosci., 1, 10.1038/ngeo.2007.51
Chauvel, 2009, Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle, Geochem. Geophys. Geosyst., 10, 10.1029/2008GC002101
Chen, 2017, Origin of continental arc andesites: the composition of source rocks is the key, J. Asian Earth Sci., 145, 217, 10.1016/j.jseaes.2017.04.012
Chen, 2014, Origin of andesitic rocks: geochemical constraints from Mesozoic volcanics in the Luzong basin, South China, Lithos, 190, 220, 10.1016/j.lithos.2013.12.011
Chen, 2016, Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle–Lower Yangtze Valley, South China, Lithos, 254, 94, 10.1016/j.lithos.2016.03.012
Clift, 2004, Controls on tectonic accretion versus erosion in subduction zones; implications for the origin and recycling of the continental crust, Rev. Geophys., 42, RG2001, 10.1029/2003RG000127
Clift, 2005, Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica, Geochem. Geophys. Geosyst., 6, 10.1029/2005GC000963
Clift, 2009, Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust, Earth Sci. Rev., 97, 80, 10.1016/j.earscirev.2009.10.003
Cloos, 1988, Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins, 1: background and description, Pure Appl. Geophys., 128, 456
Cloos, 1988, Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins, 2: implications and discussion, Pure Appl. Geophys., 128, 501, 10.1007/BF00874549
Coltice, 2000, 40K-40Ar constraints on recycling continental crust into the mantle, Science, 288, 845, 10.1126/science.288.5467.845
Cuadra, 1986, Geocronología K-Ar del yacimiento El Teniente y áreas adyacentes, Rev. Geol. Chile, 27, 3
De Boer, 1991, Evidence for active subduction below western Panama, Geology, 19, 649, 10.1130/0091-7613(1991)019<0649:EFASBW>2.3.CO;2
De Boer, J., Drummond, M,S., Bordelon, M.J., Defant, M.J., Bellon, H., Maury, R.C., 1995. Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). In: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Geologic Society of America, Special Paper 295, 35–55.
De Mets, 2001, A new estimate for present-day Cocos-Caribbean Plate motion: implications for slip along the Central American volcanic arc, Geophys. Res. Lett., 28, 4043, 10.1029/2001GL013518
De Wit, 1993, Earth's earliest continental lithosphere, hydrothermal flux and crustal recycling, Lithos, 30, 309, 10.1016/0024-4937(93)90043-C
Deckart, 2010, Barren Miocene granitoids in the central Andean metallogenic belt, Chile: geochemistry and Nd-Hf and U-Pb isotope systematics: Andean, Geology, 37, 1
Defant, 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662, 10.1038/347662a0
Defant, 1991, Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama, J. Petrol., 32, 1101, 10.1093/petrology/32.6.1101
Defant, 1991, Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama, Contrib. Mineral. Petrol., 106, 309, 10.1007/BF00324560
DePaolo, 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet. Sci. Lett., 53, 189, 10.1016/0012-821X(81)90153-9
Ducea, 2018, Sub-magmatic arc underplating by trench and forearc materials in shallow subduction systems; a geologic perspective and implications, Earth Sci. Rev., 185, 763, 10.1016/j.earscirev.2018.08.001
Ducea, 2004, Geologic evolution of the Xolapa complex, southern Mexico: evidence from U-Pb zircon geochronology, Geol. Soc. Am. Bull., 116, 1016, 10.1130/B25467.1
Ducea, 2004, Rates of sediment recycling beneath the Acapulco trench: constraints from (U-Th)/He thermochronology, J. Geophys. Res., 109, 10.1029/2004JB003112
Edwards, 2018, Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction, Geosphere, 14, 510, 10.1130/GES01577.1
Eisele, 2002, The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot, Earth Planet. Sci. Lett., 196, 197, 10.1016/S0012-821X(01)00601-X
Escrig, 2004, Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts, Nature, 431, 59, 10.1038/nature02904
Farley, 1992, Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas, Earth Planet. Sci. Lett., 111, 183, 10.1016/0012-821X(92)90178-X
Feigenson, 2004, Lead isotope composition of Central American volcanoes: influence of the Galapagos plume, Geochem. Geophys. Geosyst., 5, 10.1029/2003GC000621
Ferrari, 2012, The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone, Tectonophysics, 522–523, 122, 10.1016/j.tecto.2011.09.018
Fisher, 1998, Effect of subducting sea-floor roughness on fore-arc kinematics, Pacific Coast, Costa Rica, Geology, 26, 467, 10.1130/0091-7613(1998)026<0467:EOSSFR>2.3.CO;2
Futa, 1988, Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes, Earth Planet. Sci. Lett., 88, 253, 10.1016/0012-821X(88)90082-9
Gardner, 1992, Quaternary uplift astride the aseismic Cocos Ridge, Pacific Coast, Costa Rica, Geol. Soc. Am. Bull., 104, 219, 10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2
Gardner, 2013, Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica, Lithosphere, 5, 247, 10.1130/L251.1
Gerya, 2004, Dynamical causes for incipient magma chambers above slabs, Geology, 32, 89, 10.1130/G20018.1
Giambiagi, 2015, Evolution of shallow and deep structures along the Maipo–Tunuyán transect (33°40’S): from the Pacific coast to the Andean foreland, 399, 63
Gill, 1981
Gómez-Tuena, 2007, Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt, J. Petrol., 48, 537, 10.1093/petrology/egl071
Gómez-Tuena, 2008, The origin of a primitive trondhjemite from the Trans-Mexican Volcanic Belt and its implications for the construction of a modern continental arc, Geology, 36, 471, 10.1130/G24687A.1
Gomez-Tuena, 2014, An introduction to orogenic andesites and crustal growth, 1
Gómez-Tuena, 2018, Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas, Lithos, 322, 52, 10.1016/j.lithos.2018.10.005
Goss, 2006, Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas; evidence for forearc subduction erosion, Geochem. Geophys. Geosyst., 7, 10.1029/2005GC001163
Goss, 2013, Andean adakite-like high-Mg andesites on the Northern margin of the Chilean-Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion, J. Petrol., 54, 2193, 10.1093/petrology/egt044
Green, 1968, Genesis of the calc-alkaline igneous rock suite, Contrib. Mineral. Petrol., 18, 105, 10.1007/BF00371806
Gregory, 1981, An oxygen isotope profile in a section of Cretaceous oceanic-crust, Samail Ophiolite, Oman: Evidence for d18O buffering of the oceans by deep (less than 5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res., 86, 2737, 10.1029/JB086iB04p02737
Grove, 2012, The role of H2O in subduction zone magmatism, Annu. Rev. Earth Planet. Sci., 40, 413, 10.1146/annurev-earth-042711-105310
Hacker, 2011, Differentiation of the continental crust by relamination, Earth Planet. Sci. Lett., 307, 501, 10.1016/j.epsl.2011.05.024
Hacker, 2015, Continental lower crust, Annu. Rev. Earth Planet. Sci., 43, 167, 10.1146/annurev-earth-050212-124117
Hanan, 1996, Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes, Science, 272, 991, 10.1126/science.272.5264.991
Hart, 1988, Heterogeneous mantle domains: signatures, genesis and mixing chronologies, Earth Planet. Sci. Lett., 90, 273, 10.1016/0012-821X(88)90131-8
Hart, 1986, A possible new Sr–Nd–Pb mantle array and consequences for mantle mixing, Geochim. Cosmochim. Acta, 50, 1551, 10.1016/0016-7037(86)90329-7
Hart, 1992, Mantle plumes and entrainment: isotopic evidence, Science, 256, 517, 10.1126/science.256.5056.517
Hauff, 2000, Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province, Earth Planet. Sci. Lett., 174, 247, 10.1016/S0012-821X(99)00272-1
Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., Garbe-Schönberg, D., 2000b. Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem. Geophys. Geosyst. 1(5), doi:https://doi.org/10.1029/1999GC000020.
Hickey, 1986, Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°-41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust, J. Geophys. Res., 91, 5963, 10.1029/JB091iB06p05963
Hickey-Vargas, 1991, Peeled or MASHed?, Nature, 350, 381, 10.1038/350381a0
Hickey-Vargas, 1989, Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanín volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation, Contrib. Mineral. Petrol., 103, 361, 10.1007/BF00402922
Hickey-Vargas, 2002, Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile, Geology, 30, 199, 10.1130/0091-7613(2002)030<0199:MSCITM>2.0.CO;2
Hickey-Vargas, 2016, Basaltic rocks from the Andean Southern Volcanic Zone: insights from the comparison of along-strike and small-scale geochemical variations and their sources, Lithos, 258, 115, 10.1016/j.lithos.2016.04.014
Hildreth, 1988, Crustal contributions to arc magmatism in the Andes of central Chile, Contrib. Mineral. Petrol., 103, 361
Hoernle, K., van den Bogaard, P., Werner, R., Lissinna, B., Hauff, F., Alvarado, G., 2002. Missing history (16–71 Ma) of the Galapagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology 30, 795–798.
Holm, 2014, Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust, Contrib. Mineral. Petrol., 167, 1004, 10.1007/s00410-014-1004-8
Holm, 2016, Subduction zone mantle enrichment by fluids and Zr–Hf depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina, Lithos, 262, 145, 10.1016/j.lithos.2016.06.029
Husson, 2012, Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell, Earth and Planetary Science Letters, 317–318, 126, 10.1016/j.epsl.2011.11.040
Jacques, 2013, Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions, Geochim. Cosmochim. Acta, 123, 218, 10.1016/j.gca.2013.05.016
Jacques, 2014, Geochemical variations in the Central–Southern volcanic zone, Chile (38–43 degrees S); the role of fluids in generating arc magmas, Chem. Geol., 371, 27, 10.1016/j.chemgeo.2014.01.015
Jicha, 2018, Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians, J. Volcanol. Geotherm. Res., 360, 84, 10.1016/j.jvolgeores.2018.06.016
Jicha, 2004, Variable impact of the subducted slab on Aleutian Island arc magma sources: evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances, J. Petrol., 45, 1845, 10.1093/petrology/egh036
Jicha, 2006, Revised age of Aleutian Island arc formation implies high rate of magma production, Geology, 34, 661, 10.1130/G22433.1
Kawai, 2009, Lost primordial continents, Gondwana Res., 16, 581, 10.1016/j.gr.2009.05.012
Kay, 1978, Aleution magnesian andesites: melts from subducted Pacific Oceanic crust, J. Volcanol. Geotherm. Res., 4, 117, 10.1016/0377-0273(78)90032-X
Kay, 1980, Volcanic arc magmas: implications of a melting mixing model for element recycling in the crust-upper mantle system, J. Geol., 88, 497, 10.1086/628541
Kay, 2009, Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau, 204, 229
Kay, 1993, Delamination and delamination magmatism, Tectonophysics, 219, 177, 10.1016/0040-1951(93)90295-U
Kay, 2002, Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab, J. S. Am. Earth Sci., 15, 39, 10.1016/S0895-9811(02)00005-6
Kay, 1978, Pb and Sr isotopes in volcanic rocks from the Aleutian Islands and Pribilof Islands, Alaska, Geochim. Cosmochim. Acta, 42, 263, 10.1016/0016-7037(78)90178-3
Kay, 2005, Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central-Andes, Geol. Soc. Am. Bull., 117, 67, 10.1130/B25431.1
Kay, 2013, Magma sources and tectonic setting of Central Andean forearc subduction erosion and delamination andesites (25.5–28°S) related to crustal thickening, Geol. Soc. Lond. Spec. Publ., 385
Kelemen, 1995, Genesis of high-Mg andesites and the continental crust, Contrib. Mineral. Petrol., 120, 1, 10.1007/BF00311004
Kelemen, 2016, Formation of lower continental crust by relamination of buoyant arc lavas and plutons, Nat. Geosci., 9, 197, 10.1038/ngeo2662
Kelemen, 2003, Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust, vol. 138, 223
Kelemen, 2014, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, 749
Keppie, 2012, Oligocene-Miocene back-thrusting in southern Mexico linked to the rapid subduction erosion of a large forearc block, Tectonics, 31, 10.1029/2011TC002976
Kolarsky, 1995, Island arc response to shallow subduction of the Cocos Ridge, Costa Rica, 295, 235
Komabayashi, 2009, Structure of D″ layer; anti-crust grown through 4.6 Ga subduction history of the earth, Gondwana Res., 15, 342, 10.1016/j.gr.2008.11.006
Kukowski, 2006, Subduction erosion – the “normal” mode of fore-arc material transfer along the Chilean Margin, 10, 217
Kulm, 1977, A preliminary analysis of the geotectonic processesof the Andean continental margin, 6° to 45°S, 1, 285
Kurtz, 1997, Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34–35°S), Rev. Geol. Chile, 16, 145
Lallemand, 1995, High rates of arc consumption by subduction processes: some consequences, Geology, 23, 551, 10.1130/0091-7613(1995)023<0551:HROACB>2.3.CO;2
Lamb, 2003, Cenozoic climate change as a possible cause for the rise of the Andes, Nature, 425, 792, 10.1038/nature02049
Larter, 2003, Tectonic evolution and structure of the South Sandwich arc, 219, 255
Laursen, 2002, Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction, Tectonics, 21, 10.1029/2001TC901023
Leat, 2004, Magma genesis and mantle flow at a subducting slab edge: the South Sandwich arc-basin system, Earth Planet. Sci. Lett., 227, 17, 10.1016/j.epsl.2004.08.016
Leeman, 1996, Boron and other fluid-mobile elements in volcanic arc lavas: implications for subduction processes, 96, 269
Liou, 2002, Global distribution and petrotectonic characterizations of UHPM terranes, 15
Lissinna, 2002
Liu, 2007, Evidence of former stishovite in metamorphosed sediments, implying subduction to ~350 km, Earth Planet. Sci. Lett., 263, 180, 10.1016/j.epsl.2007.08.010
Liu, 2010, Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths, J. Petrol., 51, 537, 10.1093/petrology/egp082
Lonsdale, 1988, Paleogene history of the Kula plate: offshore evidence and onshore implications, Geol. Soc. Am. Bull., 100, 733, 10.1130/0016-7606(1988)100<0733:PHOTKP>2.3.CO;2
Macfarlane, 1999, Isotopic studies of northern Andean crustal evolution and ore metal sources, 7, 195
Maksaev, 2004, Chronology for El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os, and fission track dating: implications for the formation of a supergiant porphyry Cu-Mo deposit, 2004, 15
Marquez, 1999, Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican Volcanic Belt: a case for plume-related and propagating rifting in an active margin, Geochim. Cosmochim. Acta, 27, 51
Marschall, 2012, Arcmagmas sourced frommelange diapirs in subduction zones, Nat. Geosci., 5, 862, 10.1038/ngeo1634
Marshall, 1995, Quaternary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica, Geol. Soc. Am. Bull., 107, 463, 10.1130/0016-7606(1995)107<0463:QUASCD>2.3.CO;2
Marshall, 2003, Landscape evolution within a retreating volcanic arc, Costa Rica, Central America, Geology, 31, 419, 10.1130/0091-7613(2003)031<0419:LEWARV>2.0.CO;2
Maruyama, 2019
McGlashan, 2008, Crustal thickness in the central Andes from teleseismically recorded depth phase precursors, Geophys. J. Int., 175, 1013, 10.1111/j.1365-246X.2008.03897.x
Meschede, 1999, Subsidence and extension at a convergent plate margin: Evidence for tectonic erosion off Costa Rica, Terra Nova, 11, 112, 10.1046/j.1365-3121.1999.00234.x
Meschede, 1999, Mélange formation by subduction erosion: the case of the Osa mélange in southern Costa Rica, Terra Nova, 11, 141, 10.1046/j.1365-3121.1999.00237.x
Mickus, 2003, Gravity constraints on the crustal structure of Central America, AAPG Mem., 79, 638
Moore, 1998, The hydrous phase equilibra (to 3kbar) of an andesite and basaltic andesite from Western Mexico: constraints on water content and conditions of phenocrysts growth, Contrib. Mineral. Petrol., 130, 304, 10.1007/s004100050367
Morán-Zenteno, 1996, Uplift and subduction erosion in southwestern Mexico since the Oligocene: pluton geobarometry constraints, Earth Planet. Sci. Lett., 141, 51, 10.1016/0012-821X(96)00067-2
Morán-Zenteno, 2018, Cenozoic magmatism of the Sierra Madre del Sur and tectonic truncation of the Pacific margin of southern Mexico, Earth-Science Reviews, Tectonic Systems of Mexico, 183, 85
Morell, 2019, Plio-Quaternary outer forearc deformation and mass balance of the southern Costa Rica convergent margin, J. Geophys. Res. Solid Earth, 124, 9795, 10.1029/2019JB017986
Morris, 1989, 10Be and 9Be in mineral separates and whole rocks from volcanic arcs: implications for sediment subduction, Geochim. Cosmochim. Acta, 53, 3197, 10.1016/0016-7037(89)90100-2
Morris, 2000, Beryllium isotope systematics of volcanic arc cross-chains. Goldschmidt 2000, Journal of Conference Abstracts, 5, 720
Morris, 1990, The subducted component in island arc lavas constraints from Be isotopes and B-Be systematics, Nature, 344, 31, 10.1038/344031a0
Morris, 2002, Cosmogenic 10Be and the solid earth, 207
Morris, 2002, 10Be imaging of sediment accretion and subduction along the northeast Japan and Costa Rica convergent margins, Geology, 30, 59, 10.1130/0091-7613(2002)030<0059:BIOSAA>2.0.CO;2
Muñoz, 2006, Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33.5°S), Rev. Geol. Chile, 33, 109, 10.4067/S0716-02082006000100005
Muñoz, 2012, Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas, J. Petrol., 53, 1091, 10.1093/petrology/egs010
Muñoz, 2013, Isotopic shifts in the Cenozoic Andean arc of central Chile: records of an evolving basement throughout cordilleran arc mountain building, Geology, 41, 931, 10.1130/G34178.1
Nielsen, 2017, Geochemical evidence for mélange melting in global arcs, Sci. Adv., 3, 10.1126/sciadv.1602402
Noll, 1996, The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron, Geochim. Cosmochim. Acta, 60, 587, 10.1016/0016-7037(95)00405-X
Nyström, 2003, Tertiary volcanism during extension in the Andean foothills of central Chile (33°15′-33°45′S), Geol. Soc. Am. Bull., 115, 1523, 10.1130/B25099.1
Ortega-Gutiérrez, 2014, A review of batholiths and other plutonic intrusions of Mexico, Gondwana Res., 26, 834, 10.1016/j.gr.2014.05.002
Ortega-Gutiérrez, 2018, The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution, Earth-Science Reviews Tectonic Systems of Mexico, 183
Parada, 1999, Multiple sources for the Coastal Batholith of central Chile (31–34°S): geochemical and Sr–Nd isotopic evidence and tectonic implications, Lithos, 46, 505, 10.1016/S0024-4937(98)00080-2
Pardo, 1995, Shape of the subducted Rivera and Cocos plate in southern Mexico: seismic and tectonic implications, J. Geophys. Res., 100, 12357, 10.1029/95JB00919
Parolari, 2018, A balancing act of crust creation and destruction along the western Mexican convergent margin, Geology, 46, 455, 10.1130/G39972.1
Peacock, 2005, Thermal structure of the Costa Rica–Nicaragua subduction zone, Phys. Earth Planet. Inter., 149, 187, 10.1016/j.pepi.2004.08.030
Pearson, 2004, Re–Os isotope systematics and platinum group element fractionation duringmantlemelt extraction: a study of massif and xenolith peridotite suites, Chem. Geol., 208, 29, 10.1016/j.chemgeo.2004.04.005
Pérez-Campos, 2008, Horizontal subduction and truncation of the Cocos Plate beneath central Mexico, Geophys. Res. Lett., 35, 10.1029/2008GL035127
Plank, 2004, Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents, J. Petrol., 46, 921, 10.1093/petrology/egi005
Plank, 1998, The geochemical composition of subducting sediment and its consequences for the crust and the mantle, Chem. Geol., 145, 325, 10.1016/S0009-2541(97)00150-2
Proenza, 2017, Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: evidence from chromitite zircon grains of eastern Cuban ophiolites, Geosci. Front.
Protti, 1995, Correlation between the age of the subducting Cocos Plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica, 295, 309
Puig, 1988, Geologic and metallogenic significance of the isotopic composition of lead in galenas of the Chilean Andes, Econ. Geol., 83, 843, 10.2113/gsecongeo.83.4.843
Ramos, 2010, The Grenville-age basement of the Andes, J. S. Am. Earth Sci., 29, 77, 10.1016/j.jsames.2009.09.004
Ranero, 2000, Subduction erosion along the Middle America convergent margin, Nature, 404, 748, 10.1038/35008046
Rech, 2006, Neogene climate change and uplift in the Atacama Desert, Chile, Geology, 34, 761, 10.1130/G22444.1
Risse, 2013, Multi-stage evolution of Late Neogene mantle-derived magmas from the Central Andes back-arc in the Southern Puna Plateau of Argentina, J. Petrol., 10, 1963, 10.1093/petrology/egt038
Rogers, 1989, A geochemical transverse across the North Chilean Andes: evidence of crust generation from the mantle wedge, Earth Planet. Sci. Lett., 91, 271, 10.1016/0012-821X(89)90003-4
Rojas-Agramonte, 2016, Recycling and transport of continental material through the mantle wedge above subduction zones: a Caribbean example, Earth Planet. Sci. Lett., 436, 93, 10.1016/j.epsl.2015.11.040
Rudnick, 1995, Making continental crust, Nature, 378, 571, 10.1038/378571a0
Rudnick, 1995, Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 33, 267, 10.1029/95RG01302
Rudnick, 2003, Composition of the continental crust, 1
Rutland, 1971, Andean orogeny and ocean floor spreading, Nature, 233, 252, 10.1038/233252a0
Ryan, 2012, Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone, Geosphere, 8, 1254, 10.1130/GES00815.1
Sallarés, 2001, Lithospheric structure of the Costa Rican Isthmus: effects of subduction zone magmatism on an oceanic plateau, J. Geophys. Res., 106, 621, 10.1029/2000JB900245
Schaaf, 2010, Geochemical and isotopic profile of Pico de Orizaba (Citlaltépetl) volcano, Mexico: insights for magma generation processes, J. Volcanol. Geotherm. Res., 197, 108, 10.1016/j.jvolgeores.2010.02.016
Schaaf, P., Morales-Zenteno, D., del Sol Hernandez-Bernal, M., Solis-Pichardo, G., Tolson, G., Koehler, H., 1995. Paleogene continental margin truncation in southwestern Mexico: geochronological evidence. Tectonics 14, 1339–1350.
Schaaf, 2005, Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatepetl and surrounding monogenetic volcanoes, central Mexico, J. Petrol., 46, 1243, 10.1093/petrology/egi015
Scholl, 2007, Crustal recycling at modern subduction zones applied to the past - issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction, 200, 9
Scholl, 2009, Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens, 318, 105
Schweller, 1978, Extensional rupture of oceanic crust in the Chile Trench, Mar. Geol., 28, 271, 10.1016/0025-3227(78)90022-1
Senshu, 2009, Role of tonalite-trodhjemite-granite (TTG) crust subduction on the mechanism of supercontinent breakup, Gondwana Res., 15, 433, 10.1016/j.gr.2008.12.008
Seyfried, 1991, Anatomy of an evolving island arc; tectonic and eustatic control in the South Central American forearc area, 12, 217
Sigmarsson, 1990, Uranium and 10Be enrichments by fluids in Andean arc magmas, Nature, 346, 163, 10.1038/346163a0
Sigmarsson, 1998, Melting of a subducting oceanic crust from U–Th disequilibria in Austral Andean lavas, Nature, 394, 566, 10.1038/29052
Sigmarsson, 2002, Origin of 226Ra-230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time, Earth Planet. Sci. Lett., 196, 189, 10.1016/S0012-821X(01)00611-2
Singer, 2007, Along-strike trace element and isotopic variation in Aleutian Island arc basalt: subduction melts sediments and dehydrates serpentine, J. Geophys. Res., 112
Skewes, 2002, The giant El Teniente breccia deposit: hypogene copper distribution and emplacement, 9, 299
Søager, 2013, Melt–peridotite reactions in upwelling eclogite bod-ies: constraints from EM1-type alkaline basalts in Payenia, Argentina, Chem. Geol., 360, 204, 10.1016/j.chemgeo.2013.10.024
Søager, 2013, Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment, Chem. Geol., 349, 36, 10.1016/j.chemgeo.2013.04.007
Søager, 2015, Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina, Lithos, 212–215, 368, 10.1016/j.lithos.2014.11.026
Søager, 2015, Olivine major and trace element compositions in Southern Payenia Basalts, Argentina: evidencefor pyroxenite-peridotite melt mixing in a back-arc setting, J. Petrol., 56, 1395, 10.1093/petrology/egv043
Stern, 1989, Pliocene to present migration of the volcanic front, Andean Southern Volcanic Front, Rev. Geol. Chile, 16, 145
Stern, 1990, Comment on “A geochemical traverse across the northern Chilean Andes: evidence for crust generation from the mantle” by G. Rogers and C. Hawkesworth, Earth Planet. Sci. Lett., 101, 129, 10.1016/0012-821X(90)90134-J
Stern, 1991, Role of subduction erosion in the generation of the Andean magmas, Geology, 19, 78, 10.1130/0091-7613(1991)019<0078:ROSEIT>2.3.CO;2
Stern, 1991, Comment on “Crustal contributions to arc magmatism in the Andes of central Chile” by W. Hildreth and S. Moorbath, Contrib. Mineral. Petrol., 108, 241, 10.1007/BF00307341
Stern, 2004, Active Andean volcanism: its geologic and tectonic setting, Rev. Geol. Chile, 31, 161, 10.4067/S0716-02082004000200001
Stern, 2011, Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle, Gondwana Res., 20, 284, 10.1016/j.gr.2011.03.006
Stern, 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 123, 263, 10.1007/s004100050155
Stern, 2010, Yin and yang of continental crust creation and destruction by plate tectonic processes, Int. Geol. Rev., 52, 1, 10.1080/00206810903332322
Stern, 1995, Miocene to Present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, Central Chile, Rev. Geol. Chile, 22, 261
Stern, 1984, Isotope and trace element data for the orogenic andesites from the austral Andes, 31
Stern, 1990, Trace element and Sr, Nd, Pb and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau Lavas of southernmost South America, Contrib. Mineral. Petrol., 104, 294, 10.1007/BF00321486
Stern, 2011, Olivine-hornblende-lamprophyre dikes from Quebrada los Sapos, El Teniente, Central Chile (34°S): implications for the temporal geochemical evolution of the Andean subarc mantle, Andean Geol., 38, 1
Stern, 2011, Magmatic evolution of the giant El Teniente Cu-Mo deposit, central Chile, J. Petrol., 52, 1591, 10.1093/petrology/egq029
Stern, 2019, Implications of Hf Isotopes for the evolution of the mantle source of magmas associated with the giant El Teniente Cu-Mo megabreccia deposit, Central Chile, Minerals, 9, 550, 10.3390/min9090550
Stotz, 2017, Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics, Geophys. Res. Lett., 44, 10.1002/2017GL073920
Stracke, 2005, FOZO, HIMU and the rest of the mantle zoo, Geochem. Geophys. Geosyst., 6, 10.1029/2004GC000824
Straub, 2008, Evidence from high Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt, Geochem. Geophys. Geosyst., 9, 10.1029/2007GC001583
Straub, 2011, Formation of hybrid arc andesites beneath thick continental crust, Earth Planet. Sci. Lett., 303, 337, 10.1016/j.epsl.2011.01.013
Straub, 2013, The processes of melt differentiation in arc volcanic rocks: insights from OIB-type arc magmas in the central Mexican Volcanic Belt, J. Petrol., 54, 665, 10.1093/petrology/egs081
Straub, 2015, Crustal recycling by subduction erosion in the central Mexican Volcanic Belt, Geochim. Cosmochim. Acta, 166, 29, 10.1016/j.gca.2015.06.001
Straub, 2020, Subduction erosion and arc volcanism, Nature Reviews of Earth and Environmental Sciences, 10.1038/s43017-020-0095-1
Syracuse, 2006, Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7, 10.1029/2005GC001045
Tassara, 2012, Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int., 189, 161, 10.1111/j.1365-246X.2012.05397.x
Taylor, 1967, The origin and growth of continents, Tectonophysics, 4, 17, 10.1016/0040-1951(67)90056-X
Taylor, 1985
Tera, 1986, Sediment incorporation in island-arc magmas: inferences from 10Be, Geochim. Cosmochim. Acta, 50, 535, 10.1016/0016-7037(86)90103-1
Thomas, 2003, Motion of the Scotia Sea plates, Geophys. J. Int., 155, 789, 10.1111/j.1365-246X.2003.02069.x
Thornburg, 1987, Sedimentation in the Chile Trench: depositional morphologies, lithofacies, and stratigraphy, Geol. Soc. Am. Bull., 98, 33, 10.1130/0016-7606(1987)98<33:SITCTD>2.0.CO;2
Thornburg, 1987, Sedimentation in the Chile Trench: petrofacies and provenance, J. Sediment. Petrol., 57, 55
Tonarini, 2011, Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics, Earth Planet. Sci. Lett., 301, 275, 10.1016/j.epsl.2010.11.008
Tormey, 1991, Recent lavas from the Andean volcanic front (33 to 42°S); interpretations of along-arc compositional variations, 265, 57, 10.1130/SPE265-p57
Turner, 2017, The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1, Earth Planet. Sci. Lett., 472, 216, 10.1016/j.epsl.2017.04.051
Vanneste, 2002, Sediment subduction, subduction erosion, and strain regime in the northern South Sandwich forearc, J. Geophys. Res., 107, 2149
Vannucchi, 2001, Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica; combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula, Tectonics, 20, 649, 10.1029/2000TC001223
Vannucchi, 2003, Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for nonsteady rates of crustal recycling at subduction zones, J. Geophys. Res., 108, 2511, 10.1029/2002JB002207
Vannucchi, 2016, Subduction erosion, and the deconstruction of continental crust: the Central America case and its global implications, Gondwana Res., 40, 184, 10.1016/j.gr.2016.10.001
Verma, 1999, Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belts, J. Volcanol. Geotherm. Res., 93, 151, 10.1016/S0377-0273(99)00086-4
Vils, 2009, Boron, lithium and strontium isotopes as tracers of seawater-serpentine interaction at Mid-Atlantic ridge, ODP Leg 209, Earth Planet. Sci. Lett., 286, 414, 10.1016/j.epsl.2009.07.005
Vogt, 2013, Numerical modeling of geochemical variations caused by crustal relamination, Geochem. Geophys. Geosyst., 14, 470, 10.1002/ggge.20072
Völker, 2011, Comparative mass balance of volcanic edifices in the southern volcanic zone of the Andes between 33°S and 46°S, J. Volcanol. Geotherm. Res., 205, 114, 10.1016/j.jvolgeores.2011.03.011
von Huene, 1991, Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Rev. Geophys., 29, 279, 10.1029/91RG00969
von Huene, 2004, Generic model of subduction erosion, Geology, 32, 913, 10.1130/G20563.1
Walker, 1989, Os, Sr, Nd, and Pb isotopic systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle, Geochim. Cosmochim. Acta, 53, 1583, 10.1016/0016-7037(89)90240-8
Wang, 2010, Interplate earthquakes as a driver of shallow subduction erosion, Geology, 38, 431, 10.1130/G30597.1
White, 1985, Sources of oceanic basalts: radiogenic isotopic evidence, Geology, 13, 115, 10.1130/0091-7613(1985)13<115:SOOBRI>2.0.CO;2
White, 1982, Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution, Nature, 296, 821, 10.1038/296821a0
Wieser, 2019, New constraints from Central Chile on the origins of enriched continental compositions in thick-crusted arc magmas, Geochim. Cosmochim. Acta, 267, 51, 10.1016/j.gca.2019.09.008
Willbold, 2006, Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust, Geochem. Geophys. Geosyst., 7, 10.1029/2005GC001005
Willbold, 2010, Formation of enriched mantle components by recycling of upper and lower continental crust, Chem. Geol., 276, 188, 10.1016/j.chemgeo.2010.06.005
Xu, 2018, Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts, Sci. Rep., 8, 178, 10.1038/s41598-017-18549-7
Yamamoto, 2009, Granite subduction: arc subduction, tectonic erosion and sediment subduction, Gondwana Res., 15, 443, 10.1016/j.gr.2008.12.009
Yáñez, 2001, Magnetic anomaly interpretation across the southern Central Andes (32°-33.5°S): the role of the Juan Fernández ridge in the late Tertiary evolution of the margin, J. Geophys. Res., 106, 6325, 10.1029/2000JB900337
Yáñez, 2002, The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34°S: geodynamic evidence and implications, J. S. Am. Earth Sci., 15, 23, 10.1016/S0895-9811(02)00004-4
Ye, 2000, The possible subduction of continental material to depths greater than 200 km, Nature, 407, 734, 10.1038/35037566
Yogodzinski, 2010, Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc, Earth Planet. Sci. Lett., 300, 226, 10.1016/j.epsl.2010.09.035
Yogodzinski, 2015, The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the Western Aleutians, J. Petrol., 56, 441, 10.1093/petrology/egv006
Yogodzinski, 2017, Sr and O isotopes in western Aleutian seafloor lavas: implications for the source of fluids and trace element character of arc volcanic rocks, Earth Planet. Sci. Lett., 475, 169, 10.1016/j.epsl.2017.07.007
Ziegler, 1981, Paleoclimate, sedimentation and continental accretion, Royal Society of London Philosophical Transactions, 301, 253
Zindler, 1986, Chemical geodynamics, Annu. Rev. Earth Planet. Sci., 14, 493, 10.1146/annurev.ea.14.050186.002425