Age structure and recharge conditions of a coastal aquifer (northern Germany) investigated with 39Ar, 14C, 3H, He isotopes and Ne
Tóm tắt
A tide-influenced two-layer aquifer system in northern Germany was investigated using environmental dating tracers (3H, 39Ar, 14C), the noble gas isotopes 3He, 4He and Ne. The study area is a marshland at the River Ems estuary, exposed to regular flooding until AD 1000. The construction of dykes, artificial land drainage and groundwater abstraction define the hydraulic gradient. The aquifer depicts a pronounced age stratification with depth. Tritium concentrations above 0.03 TU are found only in the top 30 m. Two tritium-free samples between 20 and 30 m depth show 39Ar ages of 130 and 250 years. Below a clay layer–about 50 m below surface level (mbsl)–all analysed samples are 39Ar free and, thus, older than 900 years. The initial 14C activities were about 70 pmC. Resulting 14C ages increase with depth and increase up to 9,000 years, in agreement with minimal 39Ar ages. Concentrations of radiogenic 4He correlate with 14C ages. Samples in a mid-depth range (20–70 mbsl) show significant gas loss. The gas loss is assigned to recharge in a methane producing environment. Deduced 4He ages were used to assign this water to a infiltration period of about AD 1000.
Từ khóa
Tài liệu tham khảo
Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35(9):2779–2792
Aeschbach-Hertig W, El-Gamal H, Wieser M, Palcsu L (2008) Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour Res 44:W08449. doi:10.1029/2007WR006454
Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:223–252
Andrews JN, Davis SN, Fabryka-Martin J, Fontes J-C, Lehmann BE, Loosli HH, Michelot J-L, Moser H, Smith B, Wolf M (1989) The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. Geochim Cosmochim Acta 53:1803–1815
Aravena R, Wassenaar LI, Plummer LN (1995) Estimating 14C groundwater ages in a methanogenic aquifer. Water Resour Res 31(9):2307–2317
Balabane M, Galimov E, Hermann M, Letolle R (1987) Hydrogen and carbon isotope fractionation during experimental production of bacterial methane. Org Geochem 11:115–119
Benson BB, Krause D (1980) Isotope fractionation of helium during solution: a probe for the liquid state. J Sol Chem 9:895–909
Beyerle U, Aeschbach-Hertig W, Hofer M, Imboden D M, Baur H, Kipfer R (1999) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs. J Hydrol 220:169–185
Brennwald MS, Kipfer R, Imboden DM (2005) Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth Planet Sci Lett 235:31–44
Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137–1167
Charman DJ, Aravena R, Barry G, Warner BG (1994) Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. J Ecol 82(1):55–62
Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Radiat Isot 27:515–522
Collon P, Bichler M, Caggiano J, DeWayne C, El Masri Y, Golser R, Jiang CL, Heiz A, Henderson D, Kutschera W, Lehmann BE, Leleux P, Loosli H, Pardo RC, Paul M, Rehm KE, Schlosser P, Scott RH, Smethie WM, Vondrasek R (2004) Developing an AMS method to trace the oceans with 39Ar. Nucl Instrum Methods Phys Res 223–224:428–434
Eichinger L (1983) A contribution to the interpretation of 14C-groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25:347–356
Fontes J-C, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413
Fritz P, Mozeto AA, Reardon EJ (1985) Practical considerations on carbon isotope studies on soil carbon dioxide. Chem Geol Isot Geosci Sect 58(1-2):89–95
Führböter J F (2004) Salz-Süßwasserdynamik im Grundwasser des Ems-Ästuars [Salt- freshwater dynamics in groundwater of the Ems estuary]. Braunschweiger Geowiss. Arb., Bd. 28., BGA, Braunschweig, Germany, 107 pp
Gillon M, Barbecot F, Gibert E, Corcho Alvarado JA, Marlin C, Massault M (2009) Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage, implications for groundwater 14C dating. Geochim Cosmochim Acta 73(21):6488–6501
Hinrichsen D (1998) Coastal waters of the world: trends, threats, and strategies. Island, Washington, DC
IAEA (2006) Isotope hydrology information system. The ISOHIS Database. http://www.iaea.org/water. Cited October 2010
Ingerson E, Pearson FJ Jr (1964) Estimation of age and rate of motion of ground-water by the 14C-method. In: Miyake Y, Koyama T (eds) Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry. Maruzen, Tokyo, pp 263–283
Jähne B, Heinz G, Wolfgang D (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767–10776
Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PJ, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands
Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in geochemistry and cosmochemistry. In: Porcelli D, Ballentine C, Wieler R (eds) Reviews in mineralogy and geochemistry 47. Mineralogical Society of America, Washington, DC, pp 614–699
Klass DL (1984) Methane from anaerobic fermentation. Science 223:1021–1028
Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Gröning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211(3–4):237–250
Loosli HH (1983) A dating method with 39Ar. Earth Planet Sci Lett 63:51–62
Loosli HH, Purtschert R (2005) Rare gases. In: Aggarwal P, Gat JR, Froehlich K (ed) Isotopes in the water cycle: past, present and future of a developing science. IAEA, Vienna, pp 91–95
Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Nat Inst Stand Technol 105:541–549
Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, Amsterdam
Massmann G, Sültenfuß J, Dünnbier U, Knappe A, Taute T, Pekdeger A (2008) Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach. Hydrol Proced 22:788–801
Massmann G, Sültenfuß J, Pekdeger A (2009) Analysis of long-term dispersion in a river-recharged aquifer using tritium/helium data. Water Resour Res 45:W02431. doi:10.1029/2007WR006746
Mook WG (1980) Carbon-14 in hydrogeological studies. In: Fritz P, Fontes JCH (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam, pp 49–74
Oeschger H, Lehmann B, Loosli HH, Moell M, Neftel A, Schotterer U, Zumbrunn R (1976) Recent progress in low level counting and other isotope detection methods. 9th International Radiocarbon Conference, University of California Press, Berkeley, CA
Parkhurst DL, Thorstenson DC, Plummer LN (1990) PHREEQE: a computer program for geochemical calculations. US Geol Surv Water Resour Invest Rep 80-96, 195 pp
Pearson FJ Jr, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters T, Schmassmann H, Gautschi A (1991) Applied isotope hydrogeology: a case study in northern Switzerland. In: Studies in environmental science, 43, Elsevier, Amsterdam
Purtschert R, Love A, Beyerle U (2007) Constraining groundwater residence times in a fractured aquifer using noble gas isotopes. Goldschmidt Conf. Abstracts 2007, A813, Goldschmidt 2007, Cologne, Germany
Roether W (1967) Estimating the tritium input to groundwater from wine samples: groundwater and direct run-off contribution to central European surface waters. In: Isotopes in hydrology, IAEA, Vienna, pp 73–91
Schlosser P, Stute M, Dörr H, Sonntag C, Münnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353–362
Schlosser P, Stute M, Sonntag C, Münnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–254
Solomon DK (2000) 4He in groundwater. In: Cook PJ, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands
Solomon DK, Cook PC (2000) 3H and 3He. In: Cook PJ, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands
Solomon DK, Schiff SL, Poreda RL, Clarke WB (1993) Validation of the 3H/3He method for determining groundwater recharge. Water Resour Res 29(9):2951–2962
Solomon DK, Hunt A, Poreda RJ (1996) Source of radiogenic helium-4 in shallow aquifers: implications for dating young groundwater. Water Resour Res 32(6):1805–1813
Stadtwerke Emden GmbH (2006) Beweissicherungmaßnahmen für Grundwasserentnahme im Wasserwerk Tergast (Fassungsanlagen Tergast und Simonswolde) - Hydrogeologischer Jahresbericht 2005 [Annual hydrogeological report 2005 for waterwork Tergast, catchment Tergast and Simonswolde]. Stadtwerke Emden, Emden Stadt, Germany
Strack M, Kellner E, Waddington JM (2005) Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Glob Biogeochem Cycles 19:GB1003. doi:10.1029/2004GB002330
Streiff H (1990) Das ostfriesische küstengebiet [The eastern Frisian coastal area]. Sammlung geologischer Führer, Bd. 57, Borntraeger, Berlin
Stute M, Deák J, Révész K, Böhlke JK, Deseö É, Weppernig R, Schlosser P (1997) Tritium/3He dating of river infiltration: an example from the Danube in the Szigetköz area, Hungary. Ground Water 35(5):905–911
Stuyfzand PJ (1996) Salinization of drinking water in the Netherlands: anamnesis, diagnosis and remediation. 14th Saltwater Intrusion Meeting Proceedings, Malmö, Sweden, pp 168–177
Sültenfuß J, Weise SM, Osenbrück K, Bednorz F, Brose D, Robert C (2006) Radiogenes 4He als Alterstracer für Grundwasser [Radiogenic 4He as age tracer for groundwater]. Verhandlungen der Deutschen Physikalischen Gesellschaft 2006, Heidelberg, Germany. http://www.dpg-verhandlungen.de/2006/heidelberg/up2.pdf. 1 September 2009
Sültenfuss J, Rhein M, Roether W (2009) The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. Isot Environ Health Stud 45(2):1–13
Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/ helium-3 and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32:1023–1038
Tolstikhin IN, Kamenskiy IL (1969) Determination of groundwater ages by the 3H–3He method. Geochem Int 6:810–811
Torgersen T, Clarke WB (1985) Helium accumulation in groundwater: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218
Torgersen T, Clarke WB, Jenkins WJ (1979) The tritium/helium-3 method in hydrology. Isotope Hydrology 1978, IAEA Symposium 228, Neuherberg, Germany, June 1978
Visser A, Broers HP, Bierkens MFP (2007) Dating degassed groundwater with 3H/3He. Water Resour Res 43:W10434. doi:10.1029/2006WR005847
Weiss RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16:235–241
Weise SM, Moser H (1987) Groundwater dating with helium isotopes. In: Isotope techniques in water resources development, IAEA, Vienna, pp 105–126