Rieffel deformation via crossed products
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baaj, 1993, Unitaires mulitiplicatifs et dualite pour les produits croises de C∗-algebres, Ann. Sci. Ecole Norm. Sup. (4), 26, 425, 10.24033/asens.1677
Connes, 1981, An analogue of the Thom isomorphism for crossed products of a C∗-algebra by an action of R, Adv. Math., 39, 31, 10.1016/0001-8708(81)90056-6
Enock, 1996, Twisted Kac algebras obtained from 2-cocycles, Comm. Math. Phys., 178
Kaliszewski, 2008, Proper actions, fixed-point algebras and naturality in nonabelian duality, J. Funct. Anal., 254, 2949, 10.1016/j.jfa.2008.03.010
Kustermans, 2000, Locally compact quantum groups, Ann. Sci. Ecole Norm. Sup. (4), 33, 837, 10.1016/S0012-9593(00)01055-7
Landstad, 1994, Quantizations arising from abelian subgroups, Internat. J. Math., 5, 897, 10.1142/S0129167X94000462
Landstad, 1979, Towards a Galois theory for crossed products of C*-algebras, Math. Scand., 43, 311
Masuda, 2003, A C∗-algebraic framework for quantum groups, Internat. J. Math., 14, 903, 10.1142/S0129167X03002071
Pedersen, 1979
Pusz
Rieffel, 1993, Deformation quantization for action of Rd, Mem. Amer. Math. Soc., 506
Rieffel, 1995, Non-compact quantum groups associated with Abelian subgroups, Comm. Math. Phys., 171, 10.1007/BF02103775
Takesaki, 2003, Theory of Operator Algebras III, vol. 127
Woronowicz, 1991, Unbounded elements affiliated with C∗-algebras and non-compact quantum groups, Comm. Math. Phys., 136, 399, 10.1007/BF02100032
Woronowicz, 1992, Operator equalities related to the quantum E(2) group, Comm. Math. Phys., 144, 10.1007/BF02101100
Woronowicz, 1994, Quantum deformations of Lorentz group. Hopf ∗-algebra level, Compos. Math., 90
Woronowicz, 1995, C∗-algebras generated by unbounded elements, Rev. Math. Phys., 7, 481, 10.1142/S0129055X95000207