Effects of ceramide and other simple sphingolipids on membrane lateral structure

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1788 Số 1 - Trang 169-177 - 2009
Félix M. Goñi1, Alicia Alonso1
1Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goñi, 2006, Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids, Biochim. Biophys. Acta, 1758, 1902, 10.1016/j.bbamem.2006.09.011

Kolesnick, 2000, Compartmentalization of ceramide signaling: physical foundations and biological effects, J. Cell. Physiol., 184, 285, 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3

Jain, 1977, Long-range order in biomembranes, Adv. Lipid Res., 15, 1, 10.1016/B978-0-12-024915-2.50007-4

Phillips, 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta, 196, 35, 10.1016/0005-2736(70)90163-X

Shimshick, 1973, Lateral phase separation in phospholipid membranes, Biochemistry, 12, 2351, 10.1021/bi00736a026

Grant, 1974, Lateral phase separations in binary lipid mixtures: correlation between spin label and freeze-fracture electron microscopic studies, Biochim. Biophys. Acta, 363, 151, 10.1016/0005-2736(74)90055-8

Lentz, 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes, Biochemistry, 15, 4529, 10.1021/bi00665a030

Almeida, 2005, Thermodynamics of membrane domains, Biochim. Biophys. Acta, 1720, 1_13, 10.1016/j.bbamem.2005.12.004

Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta (in press), doi:10.1016/j.bbalip.2008.09.002.

Lichtenberg, 2005, Detergent-resistant membranes should not be identified with membrane rafts, Trends Biochem. Sci., 30, 430, 10.1016/j.tibs.2005.06.004

Ipsen, 1987, Phase equilibria in the phosphatidylcholine–cholesterol system, Biochim. Biophys. Acta, 905, 162, 10.1016/0005-2736(87)90020-4

Chachaty, 2005, Building up of the liquid-ordered phase formed by sphingomyelin and cholesterol, Biophys. J., 88, 4032, 10.1529/biophysj.104.054155

Clarke, 2006, The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and x-ray diffraction study, Biophys. J., 90, 2383, 10.1529/biophysj.104.056499

Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408

Pike, 2006, Rafts defined: a report on the Keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597, 10.1194/jlr.E600002-JLR200

Brown, 1998, Structure and origin of ordered liquid domains in biological membranes, J. Membrane Biol., 164, 103, 10.1007/s002329900397

Luzzati, 1968, X-ray diffraction studies of water-liquid systems, Vol. 1, 71

Mills, 2008, Liquid–liquid domains in bilayers detected by wide angle X-ray scattering, Biophys. J., 95, 682, 10.1529/biophysj.107.127910

Huang, 1996, Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun., 220, 834, 10.1006/bbrc.1996.0490

Hsueh, 2002, The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study, Biophys. J., 82, 3089, 10.1016/S0006-3495(02)75650-6

Huang, 1999, Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers, Biophys. J., 77, 1489, 10.1016/S0006-3495(99)76996-1

Holopainen, 1997, Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes, Chem. Phys. Lipids, 88, 1, 10.1016/S0009-3084(97)00040-6

Veiga, 1999, Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases, Biophys. J., 76, 342, 10.1016/S0006-3495(99)77201-2

Carrer, 1999, Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine, J. Lipid Res., 40, 1978, 10.1016/S0022-2275(20)32421-4

Holopainen, 2001, Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain, Biophys. J., 80, 765, 10.1016/S0006-3495(01)76056-0

Perkovic, 1997, Cloverleaf monolayer domains, J. Phys. Chem., 101, 381, 10.1021/jp9618183

Silva, 2006, Ceramide-platform formation and—induced biophysical changes in a fluid phospholipid membrane, Mol. Membrane Biol., 23, 137, 10.1080/09687860500439474

Cremesti, 2001, Ceramide enables fas to cap and kill, J. Biol. Chem., 276, 23954, 10.1074/jbc.M101866200

Gulbins, 2004, Ceramide, membrane rafts and infections, J. Mol. Med., 82, 357, 10.1007/s00109-004-0539-y

Bollinger, 2005, Ceramide-enriched membrane domains, Biochim. Biophys. Acta, 1746, 284, 10.1016/j.bbamcr.2005.09.001

Pinto, 2008, Membrane domain formation, interdigitation and morphological alterations induced by the very long chain asymmetric C24:1 ceramide, Biophys. J, 95, 2867, 10.1529/biophysj.108.129858

Shah, 1995, Structural and thermotropic properties of synthetic C16-0 (Palmitoyl) ceramide-effect of hydration, J. Lipid Res., 36, 1936, 10.1016/S0022-2275(20)41112-5

Ladbrooke, 1968, Studies on lecithin–cholesterol–water interactions by differential scanning calorimetry, Biochim. Biophys. Acta, 150, 333, 10.1016/0005-2736(68)90132-6

Pandit, 2006, Molecular-dynamics simulation of a ceramide bilayer, J. Chem. Phys., 124, 14708, 10.1063/1.2140689

Sot, 2006, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers, Biophys. J., 90, 903, 10.1529/biophysj.105.067710

Castro, 2007, Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach, Biophys. J., 93, 1639, 10.1529/biophysj.107.107714

de Almeida, 2003, Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts, Biophys. J., 85, 2406, 10.1016/S0006-3495(03)74664-5

Fidorra, 2006, Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol, Biophys. J., 90, 4437, 10.1529/biophysj.105.077107

Dietrich, 2001, Lipid rafts reconstituted in model membranes, Biophys. J., 80, 1417, 10.1016/S0006-3495(01)76114-0

de Almeida, 2005, Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study, J. Mol. Biol., 346, 1109, 10.1016/j.jmb.2004.12.026

Silva, 2007, Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid, Biophys. J., 92, 502, 10.1529/biophysj.106.091876

Gulbins, 2004, Ceramide, membrane rafts and infections, J. Mol. Med., 82, 357, 10.1007/s00109-004-0539-y

Grassmé, 2005, Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms, J. Biol. Chem., 280, 26256, 10.1074/jbc.M500835200

Montes, 2008, Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot–cold haemolysis, Biochemistry. Biochemistry, 47, 11222, 10.1021/bi801139z

tenGrotenhuis, 1996, Phase behavior of stratum corneum lipids in mixed Langmuir–Blodgett monolayers, Biophys. J., 71, 1389, 10.1016/S0006-3495(96)79341-4

Ruttinger, 2008, Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study, Eur. Biophys. J., 37, 759, 10.1007/s00249-008-0258-3

Scheffer, 2005, Structure of cholesterol/ceramide monolayer mixtures: implications to the molecular organization of lipid rafts, Biophys. J., 88, 3381, 10.1529/biophysj.104.051870

Massey, 2001, Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers, Biochim. Biophys. Acta, 1510, 167, 10.1016/S0005-2736(00)00344-8

Megha, 2004, Ceramide selectively displaces cholesterol form ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem., 279, 9997, 10.1074/jbc.M309992200

Sot, 2008, Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles, FEBS Lett., 582, 3230, 10.1016/j.febslet.2008.08.016

Alanko, 2005, Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules, Biochim. Biophys. Acta, 1715, 111, 10.1016/j.bbamem.2005.08.002

Nybond, 2005, Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains, Biochim. Biophys. Acta, 1718, 61, 10.1016/j.bbamem.2005.10.009

Chiantia, 2006, Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS, Biophys. J., 24, 4500, 10.1529/biophysj.106.081026

Huang, 1999, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys. J., 76, 2142, 10.1016/S0006-3495(99)77369-8

Carrer, 2001, Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1, Biochim. Biophys. Acta, 1514, 87, 10.1016/S0005-2736(01)00366-2

Megha, 2006, Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders, J. Biol. Chem., 281, 21903, 10.1074/jbc.M600395200

Megha, 2007, Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts), Biochim. Biophys. Acta, 1768, 2205, 10.1016/j.bbamem.2007.05.007

Sot, 2005, Molecular associations and surface-active properties of short-and long-N-acyl chain ceramides, Biochim. Biophys. Acta, 1711, 12, 10.1016/j.bbamem.2005.02.014

Sot, 2005, Different effects of long-and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and X-ray diffraction study, Biophys. J., 88, 3368, 10.1529/biophysj.104.057851

Carrer, 2003, Ceramide modulates the lipid membrane organization at molecular and supramolecular levels, Chem. Phys. Lipids, 122, 147, 10.1016/S0009-3084(02)00185-8

Ali, 2006, Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures, Biochemistry, 45, 12629, 10.1021/bi060610x

Pandit, 2007, Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers, Biophys. J., 92, 920, 10.1529/biophysj.106.095034

Bakht, 2007, The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains, Biochim. Biophys. Acta, 1768, 2213, 10.1016/j.bbamem.2007.05.008

Goñi, 2002, Sphingomyelinases: enzymology and membrane activity, FEBS Lett., 531, 38, 10.1016/S0014-5793(02)03482-8

Holopainen, 1998, Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane, Biochemistry, 37, 17562, 10.1021/bi980915e

Fanani, 2002, Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers, Biophys. J., 83, 3416, 10.1016/S0006-3495(02)75341-1

Härtel, 2005, Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers, Biophys. J., 88, 287, 10.1529/biophysj.104.048959

Ira, 2006, Ceramide promotes restructuring of model raft membranes, Langmuir, 22, 11284, 10.1021/la061636s

Ira, 2008, Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes, Biochim. Biophys. Acta, 1778, 185, 10.1016/j.bbamem.2007.09.021

Carrer, 2006, Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobililty: DMPC and asymmetric ceramide mixtures, Biophys. J., 90, 2394, 10.1529/biophysj.105.074252

Tamiguchi, 2006, Rapid phase change of lípido microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide, Biochim. Biophys. Acta, 1758, 145, 10.1016/j.bbamem.2006.02.026

Chiantia, 2007, Raft domains reorganization driven by short-and long-chain ceramides, Langmuir, 23, 7659, 10.1021/la7010919

Khazanov, 2008, Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application, Langmuir, 24, 6965, 10.1021/la800207z

Siskind, 2000, The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis, J. Biol. Chem., 275, 38640, 10.1074/jbc.C000587200

Siskind, 2002, Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins, J. Biol. Chem., 277, 26796, 10.1074/jbc.M200754200

Anishkin, 2006, Searching for the molecular arrangement of transmembrane ceramide channels, Biophys. J., 90, 2414, 10.1529/biophysj.105.071977

Kooijman, 2008, Membrane organization and ionization behavior of the minor but crucial lipid ceramide-1-phosphate, Biophys. J., 94, 4320, 10.1529/biophysj.107.121046

Contreras, 2006, Sphingosine increases the permeability of model and cell membranes, Biophys. J., 90, 4085, 10.1529/biophysj.105.076471