Effects of ceramide and other simple sphingolipids on membrane lateral structure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goñi, 2006, Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids, Biochim. Biophys. Acta, 1758, 1902, 10.1016/j.bbamem.2006.09.011
Kolesnick, 2000, Compartmentalization of ceramide signaling: physical foundations and biological effects, J. Cell. Physiol., 184, 285, 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3
Jain, 1977, Long-range order in biomembranes, Adv. Lipid Res., 15, 1, 10.1016/B978-0-12-024915-2.50007-4
Phillips, 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta, 196, 35, 10.1016/0005-2736(70)90163-X
Shimshick, 1973, Lateral phase separation in phospholipid membranes, Biochemistry, 12, 2351, 10.1021/bi00736a026
Grant, 1974, Lateral phase separations in binary lipid mixtures: correlation between spin label and freeze-fracture electron microscopic studies, Biochim. Biophys. Acta, 363, 151, 10.1016/0005-2736(74)90055-8
Lentz, 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes, Biochemistry, 15, 4529, 10.1021/bi00665a030
Almeida, 2005, Thermodynamics of membrane domains, Biochim. Biophys. Acta, 1720, 1_13, 10.1016/j.bbamem.2005.12.004
Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta (in press), doi:10.1016/j.bbalip.2008.09.002.
Lichtenberg, 2005, Detergent-resistant membranes should not be identified with membrane rafts, Trends Biochem. Sci., 30, 430, 10.1016/j.tibs.2005.06.004
Ipsen, 1987, Phase equilibria in the phosphatidylcholine–cholesterol system, Biochim. Biophys. Acta, 905, 162, 10.1016/0005-2736(87)90020-4
Chachaty, 2005, Building up of the liquid-ordered phase formed by sphingomyelin and cholesterol, Biophys. J., 88, 4032, 10.1529/biophysj.104.054155
Clarke, 2006, The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and x-ray diffraction study, Biophys. J., 90, 2383, 10.1529/biophysj.104.056499
Pike, 2006, Rafts defined: a report on the Keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597, 10.1194/jlr.E600002-JLR200
Brown, 1998, Structure and origin of ordered liquid domains in biological membranes, J. Membrane Biol., 164, 103, 10.1007/s002329900397
Luzzati, 1968, X-ray diffraction studies of water-liquid systems, Vol. 1, 71
Mills, 2008, Liquid–liquid domains in bilayers detected by wide angle X-ray scattering, Biophys. J., 95, 682, 10.1529/biophysj.107.127910
Huang, 1996, Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun., 220, 834, 10.1006/bbrc.1996.0490
Hsueh, 2002, The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study, Biophys. J., 82, 3089, 10.1016/S0006-3495(02)75650-6
Huang, 1999, Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers, Biophys. J., 77, 1489, 10.1016/S0006-3495(99)76996-1
Holopainen, 1997, Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes, Chem. Phys. Lipids, 88, 1, 10.1016/S0009-3084(97)00040-6
Veiga, 1999, Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases, Biophys. J., 76, 342, 10.1016/S0006-3495(99)77201-2
Carrer, 1999, Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine, J. Lipid Res., 40, 1978, 10.1016/S0022-2275(20)32421-4
Holopainen, 2001, Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain, Biophys. J., 80, 765, 10.1016/S0006-3495(01)76056-0
Silva, 2006, Ceramide-platform formation and—induced biophysical changes in a fluid phospholipid membrane, Mol. Membrane Biol., 23, 137, 10.1080/09687860500439474
Cremesti, 2001, Ceramide enables fas to cap and kill, J. Biol. Chem., 276, 23954, 10.1074/jbc.M101866200
Gulbins, 2004, Ceramide, membrane rafts and infections, J. Mol. Med., 82, 357, 10.1007/s00109-004-0539-y
Bollinger, 2005, Ceramide-enriched membrane domains, Biochim. Biophys. Acta, 1746, 284, 10.1016/j.bbamcr.2005.09.001
Pinto, 2008, Membrane domain formation, interdigitation and morphological alterations induced by the very long chain asymmetric C24:1 ceramide, Biophys. J, 95, 2867, 10.1529/biophysj.108.129858
Shah, 1995, Structural and thermotropic properties of synthetic C16-0 (Palmitoyl) ceramide-effect of hydration, J. Lipid Res., 36, 1936, 10.1016/S0022-2275(20)41112-5
Ladbrooke, 1968, Studies on lecithin–cholesterol–water interactions by differential scanning calorimetry, Biochim. Biophys. Acta, 150, 333, 10.1016/0005-2736(68)90132-6
Pandit, 2006, Molecular-dynamics simulation of a ceramide bilayer, J. Chem. Phys., 124, 14708, 10.1063/1.2140689
Sot, 2006, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers, Biophys. J., 90, 903, 10.1529/biophysj.105.067710
Castro, 2007, Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach, Biophys. J., 93, 1639, 10.1529/biophysj.107.107714
de Almeida, 2003, Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts, Biophys. J., 85, 2406, 10.1016/S0006-3495(03)74664-5
Fidorra, 2006, Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol, Biophys. J., 90, 4437, 10.1529/biophysj.105.077107
Dietrich, 2001, Lipid rafts reconstituted in model membranes, Biophys. J., 80, 1417, 10.1016/S0006-3495(01)76114-0
de Almeida, 2005, Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study, J. Mol. Biol., 346, 1109, 10.1016/j.jmb.2004.12.026
Silva, 2007, Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid, Biophys. J., 92, 502, 10.1529/biophysj.106.091876
Gulbins, 2004, Ceramide, membrane rafts and infections, J. Mol. Med., 82, 357, 10.1007/s00109-004-0539-y
Grassmé, 2005, Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms, J. Biol. Chem., 280, 26256, 10.1074/jbc.M500835200
Montes, 2008, Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot–cold haemolysis, Biochemistry. Biochemistry, 47, 11222, 10.1021/bi801139z
tenGrotenhuis, 1996, Phase behavior of stratum corneum lipids in mixed Langmuir–Blodgett monolayers, Biophys. J., 71, 1389, 10.1016/S0006-3495(96)79341-4
Ruttinger, 2008, Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study, Eur. Biophys. J., 37, 759, 10.1007/s00249-008-0258-3
Scheffer, 2005, Structure of cholesterol/ceramide monolayer mixtures: implications to the molecular organization of lipid rafts, Biophys. J., 88, 3381, 10.1529/biophysj.104.051870
Massey, 2001, Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers, Biochim. Biophys. Acta, 1510, 167, 10.1016/S0005-2736(00)00344-8
Megha, 2004, Ceramide selectively displaces cholesterol form ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem., 279, 9997, 10.1074/jbc.M309992200
Sot, 2008, Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles, FEBS Lett., 582, 3230, 10.1016/j.febslet.2008.08.016
Alanko, 2005, Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules, Biochim. Biophys. Acta, 1715, 111, 10.1016/j.bbamem.2005.08.002
Nybond, 2005, Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains, Biochim. Biophys. Acta, 1718, 61, 10.1016/j.bbamem.2005.10.009
Chiantia, 2006, Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS, Biophys. J., 24, 4500, 10.1529/biophysj.106.081026
Huang, 1999, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys. J., 76, 2142, 10.1016/S0006-3495(99)77369-8
Carrer, 2001, Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1, Biochim. Biophys. Acta, 1514, 87, 10.1016/S0005-2736(01)00366-2
Megha, 2006, Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders, J. Biol. Chem., 281, 21903, 10.1074/jbc.M600395200
Megha, 2007, Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts), Biochim. Biophys. Acta, 1768, 2205, 10.1016/j.bbamem.2007.05.007
Sot, 2005, Molecular associations and surface-active properties of short-and long-N-acyl chain ceramides, Biochim. Biophys. Acta, 1711, 12, 10.1016/j.bbamem.2005.02.014
Sot, 2005, Different effects of long-and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and X-ray diffraction study, Biophys. J., 88, 3368, 10.1529/biophysj.104.057851
Carrer, 2003, Ceramide modulates the lipid membrane organization at molecular and supramolecular levels, Chem. Phys. Lipids, 122, 147, 10.1016/S0009-3084(02)00185-8
Ali, 2006, Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures, Biochemistry, 45, 12629, 10.1021/bi060610x
Pandit, 2007, Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers, Biophys. J., 92, 920, 10.1529/biophysj.106.095034
Bakht, 2007, The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains, Biochim. Biophys. Acta, 1768, 2213, 10.1016/j.bbamem.2007.05.008
Goñi, 2002, Sphingomyelinases: enzymology and membrane activity, FEBS Lett., 531, 38, 10.1016/S0014-5793(02)03482-8
Holopainen, 1998, Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane, Biochemistry, 37, 17562, 10.1021/bi980915e
Fanani, 2002, Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers, Biophys. J., 83, 3416, 10.1016/S0006-3495(02)75341-1
Härtel, 2005, Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers, Biophys. J., 88, 287, 10.1529/biophysj.104.048959
Ira, 2006, Ceramide promotes restructuring of model raft membranes, Langmuir, 22, 11284, 10.1021/la061636s
Ira, 2008, Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes, Biochim. Biophys. Acta, 1778, 185, 10.1016/j.bbamem.2007.09.021
Carrer, 2006, Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobililty: DMPC and asymmetric ceramide mixtures, Biophys. J., 90, 2394, 10.1529/biophysj.105.074252
Tamiguchi, 2006, Rapid phase change of lípido microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide, Biochim. Biophys. Acta, 1758, 145, 10.1016/j.bbamem.2006.02.026
Chiantia, 2007, Raft domains reorganization driven by short-and long-chain ceramides, Langmuir, 23, 7659, 10.1021/la7010919
Khazanov, 2008, Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application, Langmuir, 24, 6965, 10.1021/la800207z
Siskind, 2000, The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis, J. Biol. Chem., 275, 38640, 10.1074/jbc.C000587200
Siskind, 2002, Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins, J. Biol. Chem., 277, 26796, 10.1074/jbc.M200754200
Anishkin, 2006, Searching for the molecular arrangement of transmembrane ceramide channels, Biophys. J., 90, 2414, 10.1529/biophysj.105.071977
Kooijman, 2008, Membrane organization and ionization behavior of the minor but crucial lipid ceramide-1-phosphate, Biophys. J., 94, 4320, 10.1529/biophysj.107.121046