Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz

Springer Science and Business Media LLC - Tập 96 - Trang 212-224 - 1987
Hans -Joachim Massonne1, Werner Schreyer1
1Institut für Mineralogie, Ruhr-Universität, Bochum 1, Federal Republic of Germany

Tóm tắt

Following and extending the early work of Velde (1965) the pressure-temperature dependence of the compositions of potassic white micas coexisting with K-feldspar, quartz, and phlogopite in the model system K2O-MgO-Al2O3-SiO2-H2O was investigated up to fluid pressures of 24 kbar by synthesis experiments. There is a strong, almost linear increase of the Si content per formula unit (p.f.u.) of phengite, ideally KAl2−xMgx[Al1−xSi3+xO10] (OH)2 with pressure, as well as a moderate decrease of Si (or x) with temperature. The most siliceous phengite with Si near 3.8 p.f.u. becomes stable near 20 kbar depending on temperature. However, contrary to Velde's assumption, these phengites coexisting with the limiting assemblage are invariably not of an ideal dioctahedral composition (as given by the above formula) but have total octahedral occupancies as high as about 2.1 p.f.u. The stability field of the critical assemblage phengite — K-feldspar — phlogopite — quartz ranges, in the presence of excess H2O, from at least 350° C to about 700° C but has an upper pressure limit in the range 16–22 kbar, when K-feldspar and phlogopite react to form phengite and a K, Mg-rich siliceous fluid. For the purpose of using these phase relationships as a new geobarometer for natural rocks, the influence of other components in the phengite (F, Fe, Na) is evaluated on the basis of literature data. Water activities below unity shift the Si isopleths of phengite towards higher pressures and lower temperatures, but the effects are relatively small. Tests of the new geobarometer with published analytical and PT data on natural phengite-bearing rocks are handicapped by the paucity of reliable values, but also by the obvious lack of equilibration of phengite compositions in many rocks that show zonation of their phengites or even more than one generation of potassic white micas with different compositions. From natural phengites that do not coexist with the limiting assemblage studied here but still with a Mg, Fe-silicate, at least minimum pressures can be derived with the use of the data presented.

Tài liệu tham khảo