Tegument protein control of latent herpesvirus establishment and animation
Tóm tắt
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Tài liệu tham khảo
Pellet P, Roizman B: Herpesviridae: A Brief Introduction. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2480-2499. 5
Bresnahan WA, Shenk TE: UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci USA. 2000, 97: 14506-14511. 10.1073/pnas.97.26.14506.
Moriuchi H, Moriuchi M, Straus SE, Cohen JI: Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol. 1993, 67: 2739-2746.
Wysocka J, Herr W: The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003, 28: 294-304. 10.1016/S0968-0004(03)00088-4.
Nicholson IP, Sutherland JS, Chaudry TN, Blewett EL, Barry PA, Nicholl MJ, Preston CM: Properties of virion transactivator proteins encoded by primate cytomegaloviruses. Virol J. 2009, 6: 65-10.1186/1743-422X-6-65.
Schreiber A, Harter G, Schubert A, Bunjes D, Mertens T, Michel D: Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother. 2009, 10: 191-209. 10.1517/14656560802678138.
Billaud G, Thouvenot D, Morfin F: Drug targets in herpes simplex and Epstein Barr Virus infections. Infect Disord Drug Targets. 2009, 9: 117-125.
Roizman B, Knipe D, Whitley R: Herpes Simplex Viruses. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2501-2601. 5
Cohen J, Straus S, Arvin A: Varicella-Zoster Virus Replication, Pathogenesis, and Management. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2773-2818. 5
Sinclair J: Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J Clin Virol. 2008, 41: 180-185. 10.1016/j.jcv.2007.11.014.
Mendelson M, Monard S, Sissons P, Sinclair J: Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol. 1996, 77 (Pt 12): 3099-3102. 10.1099/0022-1317-77-12-3099.
Mocarski E, Shenk T, Pass R: Cytomegaloviruses. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2701-2772. 5
De Bolle L, Naesens L, De Clercq E: Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005, 18: 217-245. 10.1128/CMR.18.1.217-245.2005.
Yamanishi K, Mori Y, Pellet P: Human Herpesviruses 6 and 7. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2820-2845. 5
Miyake F, Yoshikawa T, Sun H, Kakimi A, Ohashi M, Akimoto S, Nishiyama Y, Asano Y: Latent infection of human herpesvirus 7 in CD4(+) T lymphocytes. J Med Virol. 2006, 78: 112-116. 10.1002/jmv.20511.
Coleman CB, Nealy MS, Tibbetts SA: Immature and transitional B cells are latency reservoirs for a gammaherpesvirus. J Virol. 2010, 84: 13045-13052. 10.1128/JVI.01455-10.
Rickinson A, Kieff E: Epstein-Barr Virus. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2655-2700. 5
Ganem D: Kaposi's Sarcoma-associated Herpesvirus. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2848-2888. 5
Efstathiou S, Preston CM: Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res. 2005, 111: 108-119. 10.1016/j.virusres.2005.04.017.
Bloom DC, Giordani NV, Kwiatkowski DL: Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta. 2010, 1799: 246-256.
Knipe DM, Cliffe A: Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008, 6: 211-221. 10.1038/nrmicro1794.
Kutluay SB, Triezenberg SJ: Role of chromatin during herpesvirus infections. Biochim Biophys Acta. 2009, 1790: 456-466.
Perng GC, Jones C: Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis. 2010, 2010: 262415-
Sissons JG, Bain M, Wills MR: Latency and reactivation of human cytomegalovirus. J Infect. 2002, 44: 73-77. 10.1053/jinf.2001.0948.
Bego MG, St Jeor S: Human cytomegalovirus infection of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. Exp Hematol. 2006, 34: 555-570. 10.1016/j.exphem.2005.11.012.
Slobedman B, Cao JZ, Avdic S, Webster B, McAllery S, Cheung AK, Tan JC, Abendroth A: Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiol. 2010, 5: 883-900. 10.2217/fmb.10.58.
Sinclair J: Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta. 2010, 1799: 286-295.
Sinclair J, Sissons P: Latency and reactivation of human cytomegalovirus. J Gen Virol. 2006, 87: 1763-1779. 10.1099/vir.0.81891-0.
Amon W, Farrell PJ: Reactivation of Epstein-Barr virus from latency. Rev Med Virol. 2005, 15: 149-156. 10.1002/rmv.456.
Young LS, Rickinson AB: Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004, 4: 757-768. 10.1038/nrc1452.
Tsurumi T, Fujita M, Kudoh A: Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol. 2005, 15: 3-15. 10.1002/rmv.441.
Young LS, Dawson CW, Eliopoulos AG: The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol. 2000, 53: 238-247. 10.1136/mp.53.5.238.
Tempera I, Lieberman PM: Chromatin organization of gammaherpesvirus latent genomes. Biochim Biophys Acta. 2010, 1799: 236-245.
Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, Wilson AC, Mohr I, Chao MV: Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe. 2010, 8: 320-330. 10.1016/j.chom.2010.09.007.
Danaher RJ, Jacob RJ, Miller CS: Establishment of a quiescent herpes simplex virus type 1 infection in neurally-differentiated PC12 cells. J Neurovirol. 1999, 5: 258-267. 10.3109/13550289909015812.
Jamieson DR, Robinson LH, Daksis JI, Nicholl MJ, Preston CM: Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. J Gen Virol. 1995, 76 (Pt 6): 1417-1431. 10.1099/0022-1317-76-6-1417.
Russell J, Preston CM: An in vitro latency system for herpes simplex virus type 2. J Gen Virol. 1986, 67 (Pt 2): 397-403. 10.1099/0022-1317-67-2-397.
Wilcox CL, Johnson EM: Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol. 1987, 61: 2311-2315.
Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML, et al: A new model of EBV infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2010, 85: 165-177. 10.1128/JVI.01512-10.
Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA: Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe. 2010, 8: 284-291. 10.1016/j.chom.2010.08.001.
Ace CI, McKee TA, Ryan JM, Cameron JM, Preston CM: Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J Virol. 1989, 63: 2260-2269.
Imai Y, Apakupakul K, Krause PR, Halford WP, Margolis TP: Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal ganglia. J Virol. 2009, 83: 7873-7882. 10.1128/JVI.00043-09.
Margolis TP, Imai Y, Yang L, Vallas V, Krause PR: Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol. 2007, 81: 1872-1878. 10.1128/JVI.02110-06.
Proenca JT, Coleman HM, Connor V, Winton DJ, Efstathiou S: A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol. 2008, 89: 2965-2974. 10.1099/vir.0.2008/005066-0.
Margolis TP, Dawson CR, LaVail JH: Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations. Invest Ophthalmol Vis Sci. 1992, 33: 259-267.
Yang L, Voytek CC, Margolis TP: Immunohistochemical analysis of primary sensory neurons latently infected with herpes simplex virus type 1. J Virol. 2000, 74: 209-217. 10.1128/JVI.74.1.209-217.2000.
Sawtell NM, Thompson RL: Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol. 1992, 66: 2157-2169.
Speck PG, Simmons A: Synchronous appearance of antigen-positive and latently infected neurons in spinal ganglia of mice infected with a virulent strain of herpes simplex virus. J Gen Virol. 1992, 73 (Pt 5): 1281-1285. 10.1099/0022-1317-73-5-1281.
Lachmann RH, Sadarangani M, Atkinson HR, Efstathiou S: An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J Gen Virol. 1999, 80 (Pt 5): 1271-1282.
Sawtell NM: Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol. 1997, 71: 5423-5431.
Thompson RL, Sawtell NM: Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol. 2000, 74: 965-974. 10.1128/JVI.74.2.965-974.2000.
Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM: Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA. 1989, 86: 4736-4740. 10.1073/pnas.86.12.4736.
Speck PG, Simmons A: Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. J Virol. 1991, 65: 4001-4005.
Katan M, Haigh A, Verrijzer CP, van der Vliet PC, O'Hare P: Characterization of a cellular factor which interacts functionally with Oct-1 in the assembly of a multicomponent transcription complex. Nucleic Acids Res. 1990, 18: 6871-6880. 10.1093/nar/18.23.6871.
Wilson AC, LaMarco K, Peterson MG, Herr W: The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell. 1993, 74: 115-125. 10.1016/0092-8674(93)90299-6.
Xiao P, Capone JP: A cellular factor binds to the herpes simplex virus type 1 transactivator Vmw65 and is required for Vmw65-dependent protein-DNA complex assembly with Oct-1. Mol Cell Biol. 1990, 10: 4974-4977.
Stern S, Tanaka M, Herr W: The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature. 1989, 341: 624-630. 10.1038/341624a0.
O'Hare P, Goding CR, Haigh A: Direct combinatorial interaction between a herpes simplex virus regulatory protein and a cellular octamer-binding factor mediates specific induction of virus immediate-early gene expression. Embo J. 1988, 7: 4231-4238.
O'Hare P, Goding CR: Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell. 1988, 52: 435-445.
La Boissiere S, Hughes T, O'Hare P: HCF-dependent nuclear import of VP16. Embo J. 1999, 18: 480-489. 10.1093/emboj/18.2.480.
Preston CM, Frame MC, Campbell ME: A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell. 1988, 52: 425-434. 10.1016/S0092-8674(88)80035-7.
Herrera FJ, Triezenberg SJ: VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol. 2004, 78: 9689-9696. 10.1128/JVI.78.18.9689-9696.2004.
Triezenberg SJ, Kingsbury RC, McKnight SL: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 1988, 2: 718-729. 10.1101/gad.2.6.718.
Goodrich JA, Hoey T, Thut CJ, Admon A, Tjian R: Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell. 1993, 75: 519-530. 10.1016/0092-8674(93)90386-5.
Ingles CJ, Shales M, Cress WD, Triezenberg SJ, Greenblatt J: Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature. 1991, 351: 588-590. 10.1038/351588a0.
Klemm RD, Goodrich JA, Zhou S, Tjian R: Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc Natl Acad Sci USA. 1995, 92: 5788-5792. 10.1073/pnas.92.13.5788.
Lin YS, Ha I, Maldonado E, Reinberg D, Green MR: Binding of general transcription factor TFIIB to an acidic activating region. Nature. 1991, 353: 569-571. 10.1038/353569a0.
Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL: Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science. 1997, 277: 1310-1313. 10.1126/science.277.5330.1310.
Tal-Singer R, Pichyangkura R, Chung E, Lasner TM, Randazzo BP, Trojanowski JQ, Fraser NW, Triezenberg SJ: The transcriptional activation domain of VP16 is required for efficient infection and establishment of latency by HSV-1 in the murine peripheral and central nervous systems. Virology. 1999, 259: 20-33. 10.1006/viro.1999.9756.
Hancock MH, Cliffe AR, Knipe DM, Smiley JR: Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells. J Virol. 2010, 84: 1366-1375. 10.1128/JVI.01727-09.
Peng H, Nogueira ML, Vogel JL, Kristie TM: Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to HSV-1 DNA replication components. Proc Natl Acad Sci USA. 2010, 107: 2461-2466. 10.1073/pnas.0911128107.
Oh J, Fraser NW: Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol. 2008, 82: 3530-3537. 10.1128/JVI.00586-07.
Leinbach SS, Summers WC: The structure of herpes simplex virus type 1 DNA as probed by micrococcal nuclease digestion. J Gen Virol. 1980, 51: 45-59. 10.1099/0022-1317-51-1-45.
Placek BJ, Berger SL: Chromatin dynamics during herpes simplex virus-1 lytic infection. Biochim Biophys Acta. 2010, 1799: 223-227.
Paulus C, Nitzsche A, Nevels M: Chromatinisation of herpesvirus genomes. Rev Med Virol. 2010, 20: 34-50. 10.1002/rmv.632.
Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, Berger SL: During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol. 2004, 78: 10178-10186. 10.1128/JVI.78.18.10178-10186.2004.
Huang J, Kent JR, Placek B, Whelan KA, Hollow CM, Zeng PY, Fraser NW, Berger SL: Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J Virol. 2006, 80: 5740-5746. 10.1128/JVI.00169-06.
Memedula S, Belmont AS: Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16. Curr Biol. 2003, 13: 241-246. 10.1016/S0960-9822(03)00048-4.
Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, Wright AP, Workman JL: Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell. 1999, 4: 649-655. 10.1016/S1097-2765(00)80216-6.
Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL: Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature. 1998, 394: 498-502. 10.1038/28886.
Kundu TK, Palhan VB, Wang Z, An W, Cole PA, Roeder RG: Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell. 2000, 6: 551-561. 10.1016/S1097-2765(00)00054-X.
Kraus WL, Manning ET, Kadonaga JT: Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol. 1999, 19: 8123-8135.
Barlev NA, Candau R, Wang L, Darpino P, Silverman N, Berger SL: Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J Biol Chem. 1995, 270: 19337-19344. 10.1074/jbc.270.33.19337.
Kutluay SB, DeVos SL, Klomp JE, Triezenberg SJ: Transcriptional coactivators are not required for herpes simplex virus type 1 immediate-early gene expression in vitro. J Virol. 2009, 83: 3436-3449. 10.1128/JVI.02349-08.
Roizman B, Sears AE: An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol. 1987, 41: 543-571. 10.1146/annurev.mi.41.100187.002551.
Kristie TM, Vogel JL, Sears AE: Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc Natl Acad Sci USA. 1999, 96: 1229-1233. 10.1073/pnas.96.4.1229.
LaBoissiere S, O'Hare P: Analysis of HCF, the cellular cofactor of VP16, in herpes simplex virus-infected cells. J Virol. 2000, 74: 99-109. 10.1128/JVI.74.1.99-109.2000.
Lu R, Misra V: Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res. 2000, 28: 2446-2454. 10.1093/nar/28.12.2446.
Akhova O, Bainbridge M, Misra V: The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. J Virol. 2005, 79: 14708-14718. 10.1128/JVI.79.23.14708-14718.2005.
Lu R, Yang P, O'Hare P, Misra V: Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol Cell Biol. 1997, 17: 5117-5126.
Lu R, Misra V: Potential role for luman, the cellular homologue of herpes simplex virus VP16 (alpha gene trans-inducing factor), in herpesvirus latency. J Virol. 2000, 74: 934-943. 10.1128/JVI.74.2.934-943.2000.
Kolb G, Kristie TM: Association of the cellular coactivator HCF-1 with the Golgi apparatus in sensory neurons. J Virol. 2008, 82: 9555-9563. 10.1128/JVI.01174-08.
Cliffe AR, Garber DA, Knipe DM: Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol. 2009, 83: 8182-8190. 10.1128/JVI.00712-09.
Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM: Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci USA. 2005, 102: 16055-16059. 10.1073/pnas.0505850102.
Deshmane SL, Fraser NW: During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol. 1989, 63: 943-947.
Nogueira ML, Wang VE, Tantin D, Sharp PA, Kristie TM: Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci USA. 2004, 101: 1473-1478. 10.1073/pnas.0307300101.
He X, Treacy MN, Simmons DM, Ingraham HA, Swanson LW, Rosenfeld MG: Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature. 1989, 340: 35-41. 10.1038/340035a0.
Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT: RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987, 235: 1056-1059. 10.1126/science.2434993.
Batchelor AH, O'Hare P: Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J Virol. 1990, 64: 3269-3279.
Zwaagstra JC, Ghiasi H, Slanina SM, Nesburn AB, Wheatley SC, Lillycrop K, Wood J, Latchman DS, Patel K, Wechsler SL: Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol. 1990, 64: 5019-5028.
Kubat NJ, Amelio AL, Giordani NV, Bloom DC: The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol. 2004, 78: 12508-12518. 10.1128/JVI.78.22.12508-12518.2004.
Drolet BS, Perng GC, Cohen J, Slanina SM, Yukht A, Nesburn AB, Wechsler SL: The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology. 1998, 242: 221-232. 10.1006/viro.1997.9020.
Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR: MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 2008, 454: 780-783.
Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR: Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol. 2009, 83: 10677-10683. 10.1128/JVI.01185-09.
Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, Coen DM: Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol. 2010, 84: 4659-4672. 10.1128/JVI.02725-09.
Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM: Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol. 2006, 80: 5499-5508. 10.1128/JVI.00200-06.
Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR: An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA. 2008, 105: 10931-10936. 10.1073/pnas.0801845105.
Tang S, Patel A, Krause PR: Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol. 2009, 83: 1433-1442. 10.1128/JVI.01723-08.
Everett RD: Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. Embo J. 1984, 3: 3135-3141.
Gelman IH, Silverstein S: Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc Natl Acad Sci USA. 1985, 82: 5265-5269. 10.1073/pnas.82.16.5265.
O'Hare P, Hayward GS: Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. J Virol. 1985, 53: 751-760.
Quinlan MP, Knipe DM: Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Mol Cell Biol. 1985, 5: 957-963.
Grewal SI, Jia S: Heterochromatin revisited. Nat Rev Genet. 2007, 8: 35-46. 10.1038/nrg2008.
Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL: Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol. 2004, 78: 6744-6757. 10.1128/JVI.78.13.6744-6757.2004.
Gu H, Liang Y, Mandel G, Roizman B: Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA. 2005, 102: 7571-7576. 10.1073/pnas.0502658102.
Gu H, Roizman B: Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci USA. 2007, 104: 17134-17139. 10.1073/pnas.0707266104.
Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL: Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 2000, 287: 1500-1503. 10.1126/science.287.5457.1500.
Thompson RL, Sawtell NM: The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol. 1997, 71: 5432-5440.
Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA: A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol. 1989, 63: 2893-2900.
Kosz-Vnenchak M, Jacobson J, Coen DM, Knipe DM: Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol. 1993, 67: 5383-5393.
Cai WZ, Schaffer PA: Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol. 1989, 63: 4579-4589.
Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA: Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol. 1989, 63: 759-768.
Jordan R, Schaffer PA: Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis. J Virol. 1997, 71: 6850-6862.
Pesola JM, Zhu J, Knipe DM, Coen DM: Herpes simplex virus 1 immediate-early and early gene expression during reactivation from latency under conditions that prevent infectious virus production. J Virol. 2005, 79: 14516-14525. 10.1128/JVI.79.23.14516-14525.2005.
Cai W, Astor TL, Liptak LM, Cho C, Coen DM, Schaffer PA: The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J Virol. 1993, 67: 7501-7512.
Halford WP, Schaffer PA: ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol. 2001, 75: 3240-3249. 10.1128/JVI.75.7.3240-3249.2001.
Stow ND, Stow EC: Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol. 1986, 67 (Pt 12): 2571-2585. 10.1099/0022-1317-67-12-2571.
Sacks WR, Schaffer PA: Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol. 1987, 61: 829-839.
Thompson RL, Sawtell NM: Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol. 2006, 80: 10919-10930. 10.1128/JVI.01253-06.
Thompson RL, Preston CM, Sawtell NM: De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog. 2009, 5: e1000352-10.1371/journal.ppat.1000352.
Steiner I, Spivack JG, Deshmane SL, Ace CI, Preston CM, Fraser NW: A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol. 1990, 64: 1630-1638.
Ecob-Prince MS, Rixon FJ, Preston CM, Hassan K, Kennedy PG: Reactivation in vivo and in vitro of herpes simplex virus from mouse dorsal root ganglia which contain different levels of latency-associated transcripts. J Gen Virol. 1993, 74 (Pt 6): 995-1002. 10.1099/0022-1317-74-6-995.
Sawtell NM: Quantitative analysis of herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol. 2003, 77: 4127-4138. 10.1128/JVI.77.7.4127-4138.2003.
Sawtell NM, Thompson RL, Haas RL: Herpes simplex virus DNA synthesis is not a decisive regulatory event in the initiation of lytic viral protein expression in neurons in vivo during primary infection or reactivation from latency. J Virol. 2006, 80: 38-50. 10.1128/JVI.80.1.38-50.2006.
Petrucelli A, Rak M, Grainger L, Goodrum F: Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus. J Virol. 2009, 83: 5615-5629. 10.1128/JVI.01989-08.
Cheung AK, Abendroth A, Cunningham AL, Slobedman B: Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood. 2006, 108: 3691-3699. 10.1182/blood-2005-12-026682.
Jenkins C, Abendroth A, Slobedman B: A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol. 2004, 78: 1440-1447. 10.1128/JVI.78.3.1440-1447.2004.
Bego M, Maciejewski J, Khaiboullina S, Pari G, St Jeor S: Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus. J Virol. 2005, 79: 11022-11034. 10.1128/JVI.79.17.11022-11034.2005.
Goodrum FD, Jordan CT, High K, Shenk T: Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci USA. 2002, 99: 16255-16260. 10.1073/pnas.252630899.
Schierling K, Stamminger T, Mertens T, Winkler M: Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol. 2004, 78: 9512-9523. 10.1128/JVI.78.17.9512-9523.2004.
Stamminger T, Gstaiger M, Weinzierl K, Lorz K, Winkler M, Schaffner W: Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol. 2002, 76: 4836-4847. 10.1128/JVI.76.10.4836-4847.2002.
Cristea IM, Moorman NJ, Terhune SS, Cuevas CD, O'Keefe ES, Rout MP, Chait BT, Shenk T: Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol. 2010, 84: 7803-7814. 10.1128/JVI.00139-10.
Terhune SS, Moorman NJ, Cristea IM, Savaryn JP, Cuevas-Bennett C, Rout MP, Chait BT, Shenk T: Human cytomegalovirus UL29/28 protein interacts with components of the NuRD complex which promote accumulation of immediate-early RNA. PLoS Pathog. 2010, 6: e1000965-10.1371/journal.ppat.1000965.
Liu B, Stinski MF: Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol. 1992, 66: 4434-4444.
Saffert RT, Kalejta RF: Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol. 2006, 80: 3863-3871. 10.1128/JVI.80.8.3863-3871.2006.
Preston CM, Nicholl MJ: Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol. 2006, 87: 1113-1121. 10.1099/vir.0.81566-0.
Saffert R, Kalejta R: Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?. Future Virology. 2008, 3: 265-277. 10.2217/17460794.3.3.265.
Tavalai N, Papior P, Rechter S, Leis M, Stamminger T: Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol. 2006, 80: 8006-8018. 10.1128/JVI.00743-06.
Tavalai N, Papior P, Rechter S, Stamminger T: Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol. 2008, 82: 126-137. 10.1128/JVI.01685-07.
Tavalai N, Stamminger T: Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res.
Ishov AM, Vladimirova OV, Maul GG: Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol. 2002, 76: 7705-7712. 10.1128/JVI.76.15.7705-7712.2002.
Saffert RT, Kalejta RF: Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol. 2007, 81: 9109-9120. 10.1128/JVI.00827-07.
Saffert RT, Penkert RR, Kalejta RF: Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol. 2010, 84: 5594-5604. 10.1128/JVI.00348-10.
Cantrell SR, Bresnahan WA: Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol. 2005, 79: 7792-7802. 10.1128/JVI.79.12.7792-7802.2005.
Hwang J, Kalejta RF: Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology. 2007, 367: 334-338. 10.1016/j.virol.2007.05.037.
Hwang J, Kalejta RF: Human cytomegalovirus protein pp71 induces Daxx SUMOylation. J Virol. 2009, 83: 6591-6598. 10.1128/JVI.02639-08.
Woodhall DL, Groves IJ, Reeves MB, Wilkinson G, Sinclair JH: Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem. 2006, 281: 37652-37660. 10.1074/jbc.M604273200.
Maxwell KL, Frappier L: Viral proteomics. Microbiol Mol Biol Rev. 2007, 71: 398-411. 10.1128/MMBR.00042-06.
Groves IJ, Reeves MB, Sinclair JH: Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic 'pre-immediate-early' repression of viral gene expression mediated by histone post-translational modification. J Gen Virol. 2009, 90: 2364-2374. 10.1099/vir.0.012526-0.
Nitzsche A, Paulus C, Nevels M: Temporal dynamics of cytomegalovirus chromatin assembly in productively infected human cells. J Virol. 2008, 82: 11167-11180. 10.1128/JVI.01218-08.
Murphy JC, Fischle W, Verdin E, Sinclair JH: Control of cytomegalovirus lytic gene expression by histone acetylation. Embo J. 2002, 21: 1112-1120. 10.1093/emboj/21.5.1112.
Reeves MB, Lehner PJ, Sissons JG, Sinclair JH: An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol. 2005, 86: 2949-2954. 10.1099/vir.0.81161-0.
Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH: Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci USA. 2005, 102: 4140-4145. 10.1073/pnas.0408994102.
Ioudinkova E, Arcangeletti MC, Rynditch A, De Conto F, Motta F, Covan S, Pinardi F, Razin SV, Chezzi C: Control of human cytomegalovirus gene expression by differential histone modifications during lytic and latent infection of a monocytic cell line. Gene. 2006, 384: 120-128. 10.1016/j.gene.2006.07.021.
Cuevas-Bennett C, Shenk T: Dynamic histone H3 acetylation and methylation at human cytomegalovirus promoters during replication in fibroblasts. J Virol. 2008, 82: 9525-9536. 10.1128/JVI.00946-08.
Dosa R, Burian K, Gonczol E: Human cytomegalovirus latency is associated with the state of differentiation of the host cells: an in vitro model in teratocarcinoma cells. Acta Microbiol Immunol Hung. 2005, 52: 397-406. 10.1556/AMicr.52.2005.3-4.11.
Lukashchuk V, McFarlane S, Everett RD, Preston CM: Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol. 2008, 82: 12543-12554. 10.1128/JVI.01215-08.
Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, Higgs DR: Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet. 2000, 24: 368-371. 10.1038/74191.
Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang W: The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci USA. 2003, 100: 10635-10640. 10.1073/pnas.1937626100.
Yuan J, Liu X, Wu AW, McGonagill PW, Keller MJ, Galle CS, Meier JL: Breaking human cytomegalovirus major immediate-early gene silence by vasoactive intestinal peptide stimulation of the protein kinase A-CREB-TORC2 signaling cascade in human pluripotent embryonal NTera2 cells. J Virol. 2009, 83: 6391-6403. 10.1128/JVI.00061-09.
Liu X, Yuan J, Wu AW, McGonagill PW, Galle CS, Meier JL: Phorbol ester-induced human cytomegalovirus major immediate-early (MIE) enhancer activation through PKC-delta, CREB, and NF-kappaB desilences MIE gene expression in quiescently infected human pluripotent NTera2 cells. J Virol. 2010, 84: 8495-8508. 10.1128/JVI.00416-10.
Penkert RR, Kalejta RF: Nuclear localization of tegument-delivered pp71 in human cytomegalovirus-infected cells is facilitated by one or more factors present in terminally differentiated fibroblasts. J Virol. 2010, 84: 9853-9863. 10.1128/JVI.00500-10.
Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR: Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol. 1996, 70: 78-83.
Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, et al: Genetic content of wild-type human cytomegalovirus. J Gen Virol. 2004, 85: 1301-1312. 10.1099/vir.0.79888-0.
Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE: Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci USA. 2003, 100: 14976-14981. 10.1073/pnas.2136652100.
Morissette G, Flamand L: Herpesviruses and chromosomal integration. J Virol. 2010, 84: 12100-12109. 10.1128/JVI.01169-10.
Luppi M, Barozzi P, Morris CM, Merelli E, Torelli G: Integration of human herpesvirus 6 genome in human chromosomes. Lancet. 1998, 352: 1707-1708. 10.1016/S0140-6736(05)61483-3.
Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, et al: The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA. 2010, 107: 5563-5568. 10.1073/pnas.0913586107.
Bolovan-Fritts CA, Mocarski ES, Wiedeman JA: Peripheral blood CD14(+) cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood. 1999, 93: 394-398.
Kondo K, Xu J, Mocarski ES: Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci USA. 1996, 93: 11137-11142. 10.1073/pnas.93.20.11137.
Kondo K, Mocarski ES: Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl. 1995, 99: 63-67.
Landini MP, Lazzarotto T, Xu J, Geballe AP, Mocarski ES: Humoral immune response to proteins of human cytomegalovirus latency-associated transcripts. Biol Blood Marrow Transplant. 2000, 6: 100-108. 10.1016/S1083-8791(00)70072-3.
White KL, Slobedman B, Mocarski ES: Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection. J Virol. 2000, 74: 9333-9337. 10.1128/JVI.74.19.9333-9337.2000.
Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA, Kouzarides T, Martignetti JA, et al: Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990, 154: 125-169.
Zipeto D, Bodaghi B, Laurent L, Virelizier JL, Michelson S: Kinetics of transcription of human cytomegalovirus chemokine receptor US28 in different cell types. J Gen Virol. 1999, 80 (Pt 3): 543-547.
Jenkins C, Garcia W, Godwin MJ, Spencer JV, Stern JL, Abendroth A, Slobedman B: Immunomodulatory properties of a viral homolog of human interleukin-10 expressed by human cytomegalovirus during the latent phase of infection. J Virol. 2008, 82: 3736-3750. 10.1128/JVI.02173-07.
Cheung AK, Gottlieb DJ, Plachter B, Pepperl-Klindworth S, Avdic S, Cunningham AL, Abendroth A, Slobedman B: The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency. Blood. 2009, 114: 4128-4137. 10.1182/blood-2008-12-197111.
Reeves MB, Sinclair JH: Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol. 2010, 91: 599-604. 10.1099/vir.0.015602-0.
Goodrum F, Reeves M, Sinclair J, High K, Shenk T: Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood. 2007, 110: 937-945. 10.1182/blood-2007-01-070078.
Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ: Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA. 2008, 105: 5453-5458. 10.1073/pnas.0711910105.
Grey F, Meyers H, White EA, Spector DH, Nelson J: A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 2007, 3: e163-10.1371/journal.ppat.0030163.
Hertel L, Lacaille VG, Strobl H, Mellins ED, Mocarski ES: Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol. 2003, 77: 7563-7574. 10.1128/JVI.77.13.7563-7574.2003.
Soderberg-Naucler C, Fish KN, Nelson JA: Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell. 1997, 91: 119-126. 10.1016/S0092-8674(01)80014-3.
Maciejewski JP, St Jeor SC: Human cytomegalovirus infection of human hematopoietic progenitor cells. Leuk Lymphoma. 1999, 33: 1-13.
Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA: Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol. 2001, 75: 7543-7554. 10.1128/JVI.75.16.7543-7554.2001.
Kuppers R: B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003, 3: 801-812. 10.1038/nri1201.
Jiang R, Scott RS, Hutt-Fletcher LM: Epstein-Barr virus shed in saliva is high in B-cell-tropic glycoprotein gp42. J Virol. 2006, 80: 7281-7283. 10.1128/JVI.00497-06.
Cohen JI: Epstein-Barr virus infection. N Engl J Med. 2000, 343: 481-492. 10.1056/NEJM200008173430707.
Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse HJ: Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci USA. 2006, 103: 7065-7070. 10.1073/pnas.0510512103.
Shannon-Lowe C, Adland E, Bell AI, Delecluse HJ, Rickinson AB, Rowe M: Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol. 2009, 83: 7749-7760. 10.1128/JVI.00108-09.
Li QX, Young LS, Niedobitek G, Dawson CW, Birkenbach M, Wang F, Rickinson AB: Epstein-Barr virus infection and replication in a human epithelial cell system. Nature. 1992, 356: 347-350. 10.1038/356347a0.
Altmann M, Hammerschmidt W: Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005, 3: e404-10.1371/journal.pbio.0030404.
Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W: AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci USA. 2010, 107: 850-855. 10.1073/pnas.0911948107.
Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K: Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol. 2007, 81: 1037-1042. 10.1128/JVI.01416-06.
Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, Bell AI, Bornkamm GW, Mautner J, Rickinson AB, Rowe M: An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog. 2009, 5: e1000341-10.1371/journal.ppat.1000341.
Halder S, Murakami M, Verma SC, Kumar P, Yi F, Robertson ES: Early events associated with infection of Epstein-Barr virus infection of primary B-cells. PLoS One. 2009, 4: e7214-10.1371/journal.pone.0007214.
Farrell PJ, Rowe DT, Rooney CM, Kouzarides T: Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. Embo J. 1989, 8: 127-132.
Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC: Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol. 2005, 79: 13993-14003. 10.1128/JVI.79.22.13993-14003.2005.
Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR: The BCL-2 family reunion. Mol Cell. 2010, 37: 299-310. 10.1016/j.molcel.2010.01.025.
Bellows DS, Howell M, Pearson C, Hazlewood SA, Hardwick JM: Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol. 2002, 76: 2469-2479. 10.1128/jvi.76.5.2469-2479.2002.
Oudejans JJ, van den Brule AJ, Jiwa NM, de Bruin PC, Ossenkoppele GJ, van der Valk P, Walboomers JM, Meijer CJ: BHRF1, the Epstein-Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood. 1995, 86: 1893-1902.
Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A, Hammerschmidt W: Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 2010, 6: e1001063-10.1371/journal.ppat.1001063. pii
Swaminathan S: Noncoding RNAs produced by oncogenic human herpesviruses. J Cell Physiol. 2008, 216: 321-326. 10.1002/jcp.21480.
Speck SH, Chatila T, Flemington E: Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol. 1997, 5: 399-405. 10.1016/S0966-842X(97)01129-3.
Bergbauer M, Kalla M, Schmeinck A, Gobel C, Rothbauer U, Eck S, Benet-Pages A, Strom TM, Hammerschmidt W: CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog. 2010, 6: e1001114-10.1371/journal.ppat.1001114. pii
Bhende PM, Seaman WT, Delecluse HJ, Kenney SC: The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet. 2004, 36: 1099-1104. 10.1038/ng1424.
Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC: Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog. 2009, 5: e1000356-10.1371/journal.ppat.1000356.
Baldick CJ, Marchini A, Patterson CE, Shenk T: Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol. 1997, 71: 4400-4408.
Werstuck G, Bilan P, Capone JP: Enhanced infectivity of herpes simplex virus type 1 viral DNA in a cell line expressing the trans-inducing factor Vmw65. J Virol. 1990, 64: 984-991.
Feederle R, Neuhierl B, Baldwin G, Bannert H, Hub B, Mautner J, Behrends U, Delecluse HJ: Epstein-Barr virus BNRF1 protein allows efficient transfer from the endosomal compartment to the nucleus of primary B lymphocytes. J Virol. 2006, 80: 9435-9443. 10.1128/JVI.00473-06.
Yates JL, Warren N, Sugden B: Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985, 313: 812-815. 10.1038/313812a0.
Kirchmaier AL, Sugden B: Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol. 1995, 69: 1280-1283.
Lindner SE, Sugden B: The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid. 2007, 58: 1-12. 10.1016/j.plasmid.2007.01.003.
Nanbo A, Sugden A, Sugden B: The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. Embo J. 2007, 26: 4252-4262. 10.1038/sj.emboj.7601853.
Wang J, Lindner SE, Leight ER, Sugden B: Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol Cell Biol. 2006, 26: 1124-1134. 10.1128/MCB.26.3.1124-1134.2006.
Speck S: Regulation of EBV Latency-Associated Gene Expression. Epstein-Barr Virus. Edited by: Robertson E. 2005, Portland: Caister Academic Press, 403-427.
Speck SH, Ganem D: Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe. 2010, 8: 100-115. 10.1016/j.chom.2010.06.014.
Thorley-Lawson DA, Duca KA, Shapiro M: Epstein-Barr virus: a paradigm for persistent infection - for real and in virtual reality. Trends Immunol. 2008, 29: 195-201. 10.1016/j.it.2008.01.006.
Kieff E, Rickinson A: Epstein-Barr Virus and Its Replication. Fields Virology. Edited by: Howley P. 2007, Philadelphia: Lippincott, 2603-2654.
Bornkamm GW, Hammerschmidt W: Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001, 356: 437-459. 10.1098/rstb.2000.0781.
Reisman D, Yates J, Sugden B: A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol. 1985, 5: 1822-1832.
Sears J, Ujihara M, Wong S, Ott C, Middeldorp J, Aiyar A: The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol. 2004, 78: 11487-11505. 10.1128/JVI.78.21.11487-11505.2004.
Iwakiri D, Takada K: Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res. 2010, 107: 119-136. full_text.
Nanbo A, Takada K: The role of Epstein-Barr virus-encoded small RNAs (EBERs) in oncogenesis. Rev Med Virol. 2002, 12: 321-326. 10.1002/rmv.363.
Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD: Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA. 2007, 104: 16164-16169. 10.1073/pnas.0702896104.
Xia T, O'Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, Ramos JC, Luz E, Pedroso C, Manrique M, et al: EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 2008, 68: 1436-1442. 10.1158/0008-5472.CAN-07-5126.
Takacs M, Banati F, Koroknai A, Segesdi J, Salamon D, Wolf H, Niller HH, Minarovits J: Epigenetic regulation of latent Epstein-Barr virus promoters. Biochim Biophys Acta. 2010, 1799: 228-235.
Chau CM, Lieberman PM: Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J Virol. 2004, 78: 12308-12319. 10.1128/JVI.78.22.12308-12319.2004.
Day L, Chau CM, Nebozhyn M, Rennekamp AJ, Showe M, Lieberman PM: Chromatin profiling of Epstein-Barr virus latency control region. J Virol. 2007, 81: 6389-6401. 10.1128/JVI.02172-06.
Alazard N, Gruffat H, Hiriart E, Sergeant A, Manet E: Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J Virol. 2003, 77: 8166-8172. 10.1128/JVI.77.14.8166-8172.2003.
Tempera I, Wiedmer A, Dheekollu J, Lieberman PM: CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog. 2010, 6: e1001048-10.1371/journal.ppat.1001048. pii
Chau CM, Zhang XY, McMahon SB, Lieberman PM: Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J Virol. 2006, 80: 5723-5732. 10.1128/JVI.00025-06.
Yu X, Wang Z, Mertz JE: ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus. PLoS Pathog. 2007, 3: e194-10.1371/journal.ppat.0030194.
Kraus RJ, Perrigoue JG, Mertz JE: ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J Virol. 2003, 77: 199-207. 10.1128/JVI.77.1.199-207.2003.
Rodriguez A, Jung EJ, Flemington EK: Cell cycle analysis of Epstein-Barr virus-infected cells following treatment with lytic cycle-inducing agents. J Virol. 2001, 75: 4482-4489. 10.1128/JVI.75.10.4482-4489.2001.
Takada K: Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer. 1984, 33: 27-32. 10.1002/ijc.2910330106.
Bhende PM, Dickerson SJ, Sun X, Feng WH, Kenney SC: X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J Virol. 2007, 81: 7363-7370. 10.1128/JVI.00154-07.
Sun CC, Thorley-Lawson DA: Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter. J Virol. 2007, 81: 13566-13577. 10.1128/JVI.01055-07.
Leucci E, Onnis A, Cocco M, De Falco G, Imperatore F, Giuseppina A, Costanzo V, Cerino G, Mannucci S, Cantisani R, et al: B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int J Cancer. 2010, 126: 1316-1326.
Biggin M, Bodescot M, Perricaudet M, Farrell P: Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol. 1987, 61: 3120-3132.
Laux G, Freese UK, Fischer R, Polack A, Kofler E, Bornkamm GW: TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology. 1988, 162: 503-507. 10.1016/0042-6822(88)90496-5.
Adamson AL, Kenney SC: Rescue of the Epstein-Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product. Virology. 1998, 251: 187-197. 10.1006/viro.1998.9396.
Francis AL, Gradoville L, Miller G: Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol. 1997, 71: 3054-3061.
Rooney CM, Rowe DT, Ragot T, Farrell PJ: The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol. 1989, 63: 3109-3116.
Shimizu N, Takada K: Analysis of the BZLF1 promoter of Epstein-Barr virus: identification of an anti-immunoglobulin response sequence. J Virol. 1993, 67: 3240-3245.
Ye J, Gradoville L, Miller G: Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol. 2010, 84: 12405-12418. 10.1128/JVI.01415-10.
Reeves MB: Chromatin-mediated regulation of cytomegalovirus gene expression. Virus Res.
Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL: Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science. 2008, 322: 268-271. 10.1126/science.1164164.
van Domselaar R, Philippen LE, Quadir R, Wiertz EJ, Kummer JA, Bovenschen N: Noncytotoxic Inhibition of Cytomegalovirus Replication through NK Cell Protease Granzyme M-Mediated Cleavage of Viral Phosphoprotein 71. J Immunol. 2010, 185: 7605-7613. 10.4049/jimmunol.1001503.
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A: PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol. 2006, 80: 7995-8005. 10.1128/JVI.00734-06.
Wilkinson GW, Kelly C, Sinclair JH, Rickards C: Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J Gen Virol. 1998, 79 (Pt 5): 1233-1245.
Korioth F, Maul GG, Plachter B, Stamminger T, Frey J: The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res. 1996, 229: 155-158. 10.1006/excr.1996.0353.
Adamson AL, Kenney S: Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol. 2001, 75: 2388-2399. 10.1128/JVI.75.5.2388-2399.2001.