Bacterial persisters: formation, eradication, and experimental systems

Trends in Microbiology - Tập 22 - Trang 417-424 - 2014
Sophie Helaine1, Elisabeth Kugelberg1
1Section of Microbiology, Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK

Tài liệu tham khảo

Bigger, 1944, Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, 244, 497, 10.1016/S0140-6736(00)74210-3 Allison, 2011, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, 473, 216, 10.1038/nature10069 Balaban, 2013, A problem of persistence: still more questions than answers?, Nat. Rev. Microbiol., 11, 587, 10.1038/nrmicro3076 Conlon, 2013, Activated ClpP kills persisters and eradicates a chronic biofilm infection, Nature, 503, 365, 10.1038/nature12790 Maisonneuve, 2013, (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity, Cell, 154, 1140, 10.1016/j.cell.2013.07.048 Nguyen, 2011, Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982, 10.1126/science.1211037 Rotem, 2010, Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence, Proc. Natl. Acad. Sci. U.S.A., 107, 12541, 10.1073/pnas.1004333107 Wakamoto, 2013, Dynamic persistence of antibiotic-stressed mycobacteria, Science, 339, 91, 10.1126/science.1229858 Yamaguchi, 2011, Regulation of growth and death in Escherichia coli by toxin-antitoxin systems, Nat. Rev. Microbiol., 9, 779, 10.1038/nrmicro2651 Monack, 2004, Persistent bacterial infections: the interface of the pathogen and the host immune system, Nat. Rev. Microbiol., 2, 747, 10.1038/nrmicro955 Palmer, 2009, ‘Nothing is permanent but change’ – antigenic variation in persistent bacterial pathogens, Cell. Microbiol., 11, 1697, 10.1111/j.1462-5822.2009.01366.x Foxman, 2002, Epidemiology of urinary tract infections: incidence, morbidity, and economic costs, Am. J. Med., 113, 5S, 10.1016/S0002-9343(02)01054-9 Chambers, 2008 Fauvart, 2011, Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies, J. Med. Microbiol., 60, 699, 10.1099/jmm.0.030932-0 Mulcahy, 2010, Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J. Bacteriol., 192, 6191, 10.1128/JB.01651-09 Adams, 2011, Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, 145, 39, 10.1016/j.cell.2011.02.022 Balaban, 2004, Bacterial persistence as a phenotypic switch, Science, 305, 1622, 10.1126/science.1099390 Aldridge, 2012, Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility, Science, 335, 100, 10.1126/science.1216166 Lewis, 2010, Persister cells, Annu. Rev. Microbiol., 64, 357, 10.1146/annurev.micro.112408.134306 Cohen, 2013, Microbial persistence and the road to drug resistance, Cell Host Microbe, 13, 632, 10.1016/j.chom.2013.05.009 Kohanski, 2007, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797, 10.1016/j.cell.2007.06.049 Grant, 2013, Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response, Virulence, 4, 273, 10.4161/viru.23987 Ezraty, 2013, Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway, Science, 340, 1583, 10.1126/science.1238328 Keren, 2013, Killing by bactericidal antibiotics does not depend on reactive oxygen species, Science, 339, 1213, 10.1126/science.1232688 Liu, 2013, Cell death from antibiotics without the involvement of reactive oxygen species, Science, 339, 1210, 10.1126/science.1232751 Helaine, 2014, Internalization of Salmonella by macrophages induces formation of nonreplicating persisters, Science, 343, 204, 10.1126/science.1244705 Kaiser, 2014, Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment, PLoS Biol., 12, e1001793, 10.1371/journal.pbio.1001793 Orman, 2013, Dormancy is not necessary or sufficient for bacterial persistence, Antimicrob. Agents Chemother., 57, 3230, 10.1128/AAC.00243-13 Moyed, 1983, hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis, J. Bacteriol., 155, 768, 10.1128/JB.155.2.768-775.1983 Germain, 2013, Molecular mechanism of bacterial persistence by HipA, Mol. Cell, 52, 248, 10.1016/j.molcel.2013.08.045 Kaspy, 2013, HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase, Nat. Commun., 4, 3001, 10.1038/ncomms4001 Keren, 2004, Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli, J. Bacteriol., 186, 8172, 10.1128/JB.186.24.8172-8180.2004 Shah, 2006, Persisters: a distinct physiological state of E. coli, BMC Microbiol., 6, 53, 10.1186/1471-2180-6-53 Gerdes, 2005, Prokaryotic toxin-antitoxin stress response loci, Nat. Rev. Microbiol., 3, 371, 10.1038/nrmicro1147 Schuster, 2013, Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate, FEMS Microbiol. Lett., 340, 73, 10.1111/1574-6968.12074 Maisonneuve, 2011, Bacterial persistence by RNA endonucleases, Proc. Natl. Acad. Sci. U.S.A., 108, 13206, 10.1073/pnas.1100186108 Dorr, 2010, Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli, PLoS Biol., 8, e1000317, 10.1371/journal.pbio.1000317 De la Cruz, 2013, A toxin-antitoxin module of Salmonella promotes virulence in mice, PLoS Pathog., 9, e1003827, 10.1371/journal.ppat.1003827 Heaton, 2012, Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus, J. Biol. Chem., 287, 12098, 10.1074/jbc.M111.332163 Rothenbacher, 2012, Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage, J. Bacteriol., 194, 3464, 10.1128/JB.00217-12 Slattery, 2013, Isolation of highly persistent mutants of Salmonella enterica serovar Typhimurium reveals a new toxin-antitoxin module, J. Bacteriol., 195, 647, 10.1128/JB.01397-12 Wang, 2012, A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS, Nat. Chem. Biol., 8, 855, 10.1038/nchembio.1062 Norton, 2012, Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli, PLoS Pathog., 8, e1002954, 10.1371/journal.ppat.1002954 Ramage, 2009, Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution, PLoS Genet., 5, e1000767, 10.1371/journal.pgen.1000767 Gefen, 2009, The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress, FEMS Microbiol. Rev., 33, 704, 10.1111/j.1574-6976.2008.00156.x Pandey, 2005, Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes, Nucleic Acids Res., 33, 966, 10.1093/nar/gki201 Sberro, 2013, Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning, Mol. Cell, 50, 136, 10.1016/j.molcel.2013.02.002 Kasari, 2013, Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli, BMC Microbiol., 13, 45, 10.1186/1471-2180-13-45 Amato, 2013, Metabolic control of persister formation in Escherichia coli, Mol. Cell, 50, 475, 10.1016/j.molcel.2013.04.002 Vega, 2012, Signaling-mediated bacterial persister formation, Nat. Chem. Biol., 8, 431, 10.1038/nchembio.915 Wu, 2012, Role of oxidative stress in persister tolerance, Antimicrob. Agents Chemother., 56, 4922, 10.1128/AAC.00921-12 Leung, 2012, A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance, J. Bacteriol., 194, 2265, 10.1128/JB.06707-11 Moker, 2010, Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules, J. Bacteriol., 192, 1946, 10.1128/JB.01231-09 Bernier, 2013, Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin, PLoS Genet., 9, e1003144, 10.1371/journal.pgen.1003144 Johnson, 2013, Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus, PLoS Genet., 9, e1003123, 10.1371/journal.pgen.1003123 Korch, 2003, Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis, Mol. Microbiol., 50, 1199, 10.1046/j.1365-2958.2003.03779.x Dorr, 2009, SOS response induces persistence to fluoroquinolones in Escherichia coli, PLoS Genet., 5, e1000760, 10.1371/journal.pgen.1000760 Kwan, 2013, Arrested protein synthesis increases persister-like cell formation, Antimicrob. Agents Chemother., 57, 1468, 10.1128/AAC.02135-12 Dhar, 2010, Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice, Proc. Natl. Acad. Sci. U.S.A., 107, 12275, 10.1073/pnas.1003219107 Keren, 2011, Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters, MBio, 2, e00100, 10.1128/mBio.00100-11 Dhar, 2007, Microbial phenotypic heterogeneity and antibiotic tolerance, Curr. Opin. Microbiol., 10, 30, 10.1016/j.mib.2006.12.007 Helaine, 2013, Heterogeneity of intracellular replication of bacterial pathogens, Curr. Opin. Microbiol., 16, 184, 10.1016/j.mib.2012.12.004 Helaine, 2010, Dynamics of intracellular bacterial replication at the single cell level, Proc. Natl. Acad. Sci. U.S.A., 107, 3746, 10.1073/pnas.1000041107 De Leenheer, 2009, Failure of antibiotic treatment in microbial populations, J. Math. Biol., 59, 563, 10.1007/s00285-008-0243-6 Cogan, 2013, Effect of periodic disinfection on persisters in a one-dimensional biofilm model, Bull. Math. Biol., 75, 94, 10.1007/s11538-012-9796-z Keren, 2012, Persister eradication: lessons from the world of natural products, Methods Enzymol., 517, 387, 10.1016/B978-0-12-404634-4.00019-X Lioy, 2010, A toxin-antitoxin module as a target for antimicrobial development, Plasmid, 63, 31, 10.1016/j.plasmid.2009.09.005 Niepa, 2012, Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin, Biomaterials, 33, 7356, 10.1016/j.biomaterials.2012.06.092 Pan, 2012, Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one, PLoS ONE, 7, e45778, 10.1371/journal.pone.0045778 Grant, 2012, Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals, Proc. Natl. Acad. Sci. U.S.A., 109, 12147, 10.1073/pnas.1203735109 Durand, 2012, Type I toxin-antitoxin systems in Bacillus subtilis, RNA Biol., 9, 1491, 10.4161/rna.22358 Pearl, 2008, Nongenetic individuality in the host-phage interaction, PLoS Biol., 6, e120, 10.1371/journal.pbio.0060120 Kim, 2011, Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells, Antimicrob. Agents Chemother., 55, 5380, 10.1128/AAC.00708-11 Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333