Bacterial persisters: formation, eradication, and experimental systems
Tài liệu tham khảo
Bigger, 1944, Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, 244, 497, 10.1016/S0140-6736(00)74210-3
Allison, 2011, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, 473, 216, 10.1038/nature10069
Balaban, 2013, A problem of persistence: still more questions than answers?, Nat. Rev. Microbiol., 11, 587, 10.1038/nrmicro3076
Conlon, 2013, Activated ClpP kills persisters and eradicates a chronic biofilm infection, Nature, 503, 365, 10.1038/nature12790
Maisonneuve, 2013, (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity, Cell, 154, 1140, 10.1016/j.cell.2013.07.048
Nguyen, 2011, Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982, 10.1126/science.1211037
Rotem, 2010, Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence, Proc. Natl. Acad. Sci. U.S.A., 107, 12541, 10.1073/pnas.1004333107
Wakamoto, 2013, Dynamic persistence of antibiotic-stressed mycobacteria, Science, 339, 91, 10.1126/science.1229858
Yamaguchi, 2011, Regulation of growth and death in Escherichia coli by toxin-antitoxin systems, Nat. Rev. Microbiol., 9, 779, 10.1038/nrmicro2651
Monack, 2004, Persistent bacterial infections: the interface of the pathogen and the host immune system, Nat. Rev. Microbiol., 2, 747, 10.1038/nrmicro955
Palmer, 2009, ‘Nothing is permanent but change’ – antigenic variation in persistent bacterial pathogens, Cell. Microbiol., 11, 1697, 10.1111/j.1462-5822.2009.01366.x
Foxman, 2002, Epidemiology of urinary tract infections: incidence, morbidity, and economic costs, Am. J. Med., 113, 5S, 10.1016/S0002-9343(02)01054-9
Chambers, 2008
Fauvart, 2011, Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies, J. Med. Microbiol., 60, 699, 10.1099/jmm.0.030932-0
Mulcahy, 2010, Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J. Bacteriol., 192, 6191, 10.1128/JB.01651-09
Adams, 2011, Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, 145, 39, 10.1016/j.cell.2011.02.022
Balaban, 2004, Bacterial persistence as a phenotypic switch, Science, 305, 1622, 10.1126/science.1099390
Aldridge, 2012, Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility, Science, 335, 100, 10.1126/science.1216166
Lewis, 2010, Persister cells, Annu. Rev. Microbiol., 64, 357, 10.1146/annurev.micro.112408.134306
Cohen, 2013, Microbial persistence and the road to drug resistance, Cell Host Microbe, 13, 632, 10.1016/j.chom.2013.05.009
Kohanski, 2007, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797, 10.1016/j.cell.2007.06.049
Grant, 2013, Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response, Virulence, 4, 273, 10.4161/viru.23987
Ezraty, 2013, Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway, Science, 340, 1583, 10.1126/science.1238328
Keren, 2013, Killing by bactericidal antibiotics does not depend on reactive oxygen species, Science, 339, 1213, 10.1126/science.1232688
Liu, 2013, Cell death from antibiotics without the involvement of reactive oxygen species, Science, 339, 1210, 10.1126/science.1232751
Helaine, 2014, Internalization of Salmonella by macrophages induces formation of nonreplicating persisters, Science, 343, 204, 10.1126/science.1244705
Kaiser, 2014, Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment, PLoS Biol., 12, e1001793, 10.1371/journal.pbio.1001793
Orman, 2013, Dormancy is not necessary or sufficient for bacterial persistence, Antimicrob. Agents Chemother., 57, 3230, 10.1128/AAC.00243-13
Moyed, 1983, hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis, J. Bacteriol., 155, 768, 10.1128/JB.155.2.768-775.1983
Germain, 2013, Molecular mechanism of bacterial persistence by HipA, Mol. Cell, 52, 248, 10.1016/j.molcel.2013.08.045
Kaspy, 2013, HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase, Nat. Commun., 4, 3001, 10.1038/ncomms4001
Keren, 2004, Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli, J. Bacteriol., 186, 8172, 10.1128/JB.186.24.8172-8180.2004
Shah, 2006, Persisters: a distinct physiological state of E. coli, BMC Microbiol., 6, 53, 10.1186/1471-2180-6-53
Gerdes, 2005, Prokaryotic toxin-antitoxin stress response loci, Nat. Rev. Microbiol., 3, 371, 10.1038/nrmicro1147
Schuster, 2013, Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate, FEMS Microbiol. Lett., 340, 73, 10.1111/1574-6968.12074
Maisonneuve, 2011, Bacterial persistence by RNA endonucleases, Proc. Natl. Acad. Sci. U.S.A., 108, 13206, 10.1073/pnas.1100186108
Dorr, 2010, Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli, PLoS Biol., 8, e1000317, 10.1371/journal.pbio.1000317
De la Cruz, 2013, A toxin-antitoxin module of Salmonella promotes virulence in mice, PLoS Pathog., 9, e1003827, 10.1371/journal.ppat.1003827
Heaton, 2012, Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus, J. Biol. Chem., 287, 12098, 10.1074/jbc.M111.332163
Rothenbacher, 2012, Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage, J. Bacteriol., 194, 3464, 10.1128/JB.00217-12
Slattery, 2013, Isolation of highly persistent mutants of Salmonella enterica serovar Typhimurium reveals a new toxin-antitoxin module, J. Bacteriol., 195, 647, 10.1128/JB.01397-12
Wang, 2012, A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS, Nat. Chem. Biol., 8, 855, 10.1038/nchembio.1062
Norton, 2012, Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli, PLoS Pathog., 8, e1002954, 10.1371/journal.ppat.1002954
Ramage, 2009, Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution, PLoS Genet., 5, e1000767, 10.1371/journal.pgen.1000767
Gefen, 2009, The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress, FEMS Microbiol. Rev., 33, 704, 10.1111/j.1574-6976.2008.00156.x
Pandey, 2005, Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes, Nucleic Acids Res., 33, 966, 10.1093/nar/gki201
Sberro, 2013, Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning, Mol. Cell, 50, 136, 10.1016/j.molcel.2013.02.002
Kasari, 2013, Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli, BMC Microbiol., 13, 45, 10.1186/1471-2180-13-45
Amato, 2013, Metabolic control of persister formation in Escherichia coli, Mol. Cell, 50, 475, 10.1016/j.molcel.2013.04.002
Vega, 2012, Signaling-mediated bacterial persister formation, Nat. Chem. Biol., 8, 431, 10.1038/nchembio.915
Wu, 2012, Role of oxidative stress in persister tolerance, Antimicrob. Agents Chemother., 56, 4922, 10.1128/AAC.00921-12
Leung, 2012, A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance, J. Bacteriol., 194, 2265, 10.1128/JB.06707-11
Moker, 2010, Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules, J. Bacteriol., 192, 1946, 10.1128/JB.01231-09
Bernier, 2013, Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin, PLoS Genet., 9, e1003144, 10.1371/journal.pgen.1003144
Johnson, 2013, Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus, PLoS Genet., 9, e1003123, 10.1371/journal.pgen.1003123
Korch, 2003, Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis, Mol. Microbiol., 50, 1199, 10.1046/j.1365-2958.2003.03779.x
Dorr, 2009, SOS response induces persistence to fluoroquinolones in Escherichia coli, PLoS Genet., 5, e1000760, 10.1371/journal.pgen.1000760
Kwan, 2013, Arrested protein synthesis increases persister-like cell formation, Antimicrob. Agents Chemother., 57, 1468, 10.1128/AAC.02135-12
Dhar, 2010, Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice, Proc. Natl. Acad. Sci. U.S.A., 107, 12275, 10.1073/pnas.1003219107
Keren, 2011, Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters, MBio, 2, e00100, 10.1128/mBio.00100-11
Dhar, 2007, Microbial phenotypic heterogeneity and antibiotic tolerance, Curr. Opin. Microbiol., 10, 30, 10.1016/j.mib.2006.12.007
Helaine, 2013, Heterogeneity of intracellular replication of bacterial pathogens, Curr. Opin. Microbiol., 16, 184, 10.1016/j.mib.2012.12.004
Helaine, 2010, Dynamics of intracellular bacterial replication at the single cell level, Proc. Natl. Acad. Sci. U.S.A., 107, 3746, 10.1073/pnas.1000041107
De Leenheer, 2009, Failure of antibiotic treatment in microbial populations, J. Math. Biol., 59, 563, 10.1007/s00285-008-0243-6
Cogan, 2013, Effect of periodic disinfection on persisters in a one-dimensional biofilm model, Bull. Math. Biol., 75, 94, 10.1007/s11538-012-9796-z
Keren, 2012, Persister eradication: lessons from the world of natural products, Methods Enzymol., 517, 387, 10.1016/B978-0-12-404634-4.00019-X
Lioy, 2010, A toxin-antitoxin module as a target for antimicrobial development, Plasmid, 63, 31, 10.1016/j.plasmid.2009.09.005
Niepa, 2012, Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin, Biomaterials, 33, 7356, 10.1016/j.biomaterials.2012.06.092
Pan, 2012, Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one, PLoS ONE, 7, e45778, 10.1371/journal.pone.0045778
Grant, 2012, Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals, Proc. Natl. Acad. Sci. U.S.A., 109, 12147, 10.1073/pnas.1203735109
Durand, 2012, Type I toxin-antitoxin systems in Bacillus subtilis, RNA Biol., 9, 1491, 10.4161/rna.22358
Pearl, 2008, Nongenetic individuality in the host-phage interaction, PLoS Biol., 6, e120, 10.1371/journal.pbio.0060120
Kim, 2011, Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells, Antimicrob. Agents Chemother., 55, 5380, 10.1128/AAC.00708-11
Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333