What are the non-food impacts of GM crop cultivation on farmers’ health?
Tóm tắt
With a steady increase in the area cultivated with genetically modified (GM) crops, the impacts of GM crop cultivation are coming under closer scrutiny around the world. The impacts on humans usually refer to possible risks to health occurring as a result of the GM food consumption. Other concerns, such as the claims of human health benefits arising from the cultivation of GM crops via reduced use of pesticides could be considered, if at all, under economic impacts of the technology. Similarly, other human health impacts could occur as a result of a modification of the amount of pesticides residues found in underground water, which could be considered under environmental impacts. Yet many GM crops are not consumed on-farm, either because they require processing before becoming edible (such as soya bean, cottonseed and oilseed) or because the entire harvest is sold to maximise profits. It would be certainly difficult to demonstrate the importance of GM foods health effects versus the non-food health effects of GM crop cultivation on farmers. However, the non-food health effects, although apparently receiving less attention, deserve a closer look because of their potential economic and environmental links. The primary research question is: What are the non-food impacts of GM crop cultivation on farmers’ health? To address specifically the main research question, the analysis focuses on two related secondary questions: 1) Does the cultivation of GM crops result in a lower number of pesticide-related poisonings? and 2) Does the cultivation of GM crops allow for higher financial resources to be used by farmers to improve their and their family’s health status? Further, the review will also evaluate the extent to which information relevant to the two secondary questions is freely-available. The abstracts of non-free articles, alongside their bibliographic details, will be included in a separate table, and if the information supplied would be detailed enough, a summary will be provided. The search and assessment methodologies (especially the search string, inclusion/exclusion criteria, data extraction table, data synthesis and presentation) were adapted following problems overcome, and experience gained, during a scoping search.
Tài liệu tham khảo
James C ISAAA Brief No. 44. Executive Summary. In Global Status of Commercialized Biotech/GM Crops: 2012. Ithaca, NY: ISAAA; 2012.
Brookes G, Barfoot P: The global income and production effects of genetically modified (GM) crops 1996–2011. GM Crops and Food: Biotechnology in Agriculture and the Food Chain 2013,4(1):74–83.
Kleter G, Bhula R, Bodnaruk K, Carazo E, Felsot ES, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong S: Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci 2007, 63: 1107–1115. 10.1002/ps.1448
Brookes G, Barfoot P: GM Crops: Global Socio-Economic and Environmental Impacts 1996–2008. Dorchester, UK: PG Economics Ltd; 2010.
Carpenter JE: Impact of GM crops on biodiversity. GM Crops 2011,2(1):7–23. 10.4161/gmcr.2.1.15086
Fawcett R, Towery D: Conservation Tillage and Plant Biotechnology: How New Technologies Can Improve the Environment By Reducing the Need to Plow. Indiana, USA: The Conservation Technology Information Center (CTIC); 2003.
Benbrook CM: Impacts of genetically engineered crops on pesticide use in the U.S. – the first sixteen years. Environ Sci Eur 2012, 24: 1–24. 10.1186/2190-4715-24-1
Gurian-Sherman D: Failure to yield. Evaluating the Performance of Genetically Engineered Crops. Cambridge, MA, USA: Union of Concerned Scientists; 2009.
Séralini G-E, Mesnage R, Clair E, Gress S, Spiroux De Vendômois J, Cellier D: Genetically modified crops safety assessments: present limits and possible improvements. Environ Sci Eur 2011, 23: 1–10. 10.1186/2190-4715-23-1
20 Questions on Genetically Modified (GM) Foods. World Health Organization; [http://www.who.int/foodsafety/publications/biotech/20questions/en/]
Hossain F, Pray CE, Lu Y, Huang J, Fan C, Hu R: Genetically modified cotton and farmers’ health in China. Int J Occup Environ Health 2004, 10: 296–303. 10.1179/oeh.2004.10.3.296
Hoddinott J: Agriculture, health, and nutrition: toward conceptualizing the linkages. In Reshaping Agriculture for Nutrition and Health. IFPRI 2020 Book. Edited by: Shenggen F, Pandya-Lorch R. Washington, DC: International Food Policy Research Institute; 2012:13–20.
European Food Safety Authority: Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal 2010,8(6):1637–1727.
Petticrew M, Roberts H: Systematic Reviews in the Social Sciences: A Practical Guide. Oxford, UK: Blackwell Publishing; 2006.
Centre for Evidence-Based Conservation Environmental Evidence. In Guidelines for Systematic Review in Environmental Management. Version 4.2. UK: Bangor University; 2013. Environmental Evidence: http://www.environmentalevidence.org/Documents/Guidelines.pdf
The Cochrane Collaboration: Cochrane handbook for systematic reviews of interventions version 5.1.0. In Edited by: Higgins JPT, Green S. 2011.
Masset E, Haddad L, Cornelius A, Isaza-Castro J: A Systematic Review of Agricultural Interventions That Aim to Improve Nutritional Status of Children. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London; 2011.
Hall C, Knight B, Ringrose S, Knox O Collaboration for Environmental Evidence: CEE Review 11–002. What have been the farm-level economic impacts of the global cultivation of GM crops? 2013. http://www.environmentalevidence.org/SR11002.html