Regularized Generalized Canonical Correlation Analysis

Arthur Tenenhaus1, Michel Tenenhaus2
1Department of Signal Processing and Electronics Systems, Supelec, Gif-sur-Yvette, 3 rue Joliot-Curie, Plateau de Moulon, 91192, Gif-sur-Yvette cedex, France
2HEC Paris, Jouy-en-Josas, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

Bougeard, S., Hanafi, M., & Qannari, E.M. (2007). ACPVI multibloc. Application en épidémiologie animale. Journal de la Société Française de Statistique, 148, 77–94.

Bougeard, S., Hanafi, M., & Qannari, E.M. (2008). Continuum redundancy-PLS regression: a simple continuum approach. Computational Statistics & Data Analysis, 52, 3686–3696.

Burnham, A.J., Viveros, R., & MacGregor, J.F. (1996). Frameworks for latent variable multivariate regression. Journal of Chemometrics, 10, 31–45.

Carroll, J.D. (1968a). A generalization of canonical correlation analysis to three or more sets of variables. In Proc. 76th conv. Am. Psych. Assoc. (pp. 227–228).

Carroll, J.D. (1968b). Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables. Unpublished companion paper to Carroll, J.D. (1968a).

Chessel, D., & Hanafi, M. (1996). Analyse de la co-inertie de K nuages de points. Revue de Statistique Appliquée, 44, 35–60.

Chu, M.T., & Watterson, J.L. (1993). On a multivariate eigenvalue problem: I. Algebraic theory and power method. SIAM Journal on Scientific and Statistical Computing, 14, 1089–1106.

Dahl, T., & Næs, T. (2006). A bridge between Tucker-1 and Carroll’s generalized canonical analysis. Computational Statistics & Data Analysis, 50, 3086–3098.

Fornell, C., & Bookstein, F.L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.

Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

Hanafi, M. (2007). PLS Path modelling: computation of latent variables with the estimation mode B. Computational Statistics, 22, 275–292.

Hanafi, M., & Kiers, H.A.L. (2006). Analysis of K sets of data, with differential emphasis on agreement between and within sets. Computational Statistics & Data Analysis, 51, 1491–1508.

Hanafi, M., & Lafosse, R. (2001). Généralisations de la régression simple pour analyser la dépendance de K ensembles de variables avec un K+1ème. Revue de Statistique Appliquée, 49, 5–30.

Horst, P. (1961). Relations among m sets of variables. Psychometrika, 26, 126–149.

Jöreskog, K.G. (1970). A general method for the analysis of covariance structure. Biometrika, 57, 239–251.

Kettenring, J.R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433–451.

Krämer, N. (2007). Analysis of high-dimensional data with partial least squares and boosting. Doctoral dissertation, Technischen Universität Berlin.

Ledoit, O., & Wolf, M. (2004). A well conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365–411.

Leurgans, S.E., Moyeed, R.A., & Silverman, B.W. (1993). Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society, Series B, 55, 725–740.

Lohmöller, J.-B. (1989). Latent variables path modeling with partial least squares. Heildelberg: Physica-Verlag.

Noonan, R., & Wold, H. (1982). PLS path modeling with indirectly observed variables: a comparison of alternative estimates for the latent variable. In K.G. Jöreskog & H. Wold (Eds.), Systems under indirect observation, Part 2 (pp. 75–94). Amsterdam: North-Holland.

Qannari, E.M., & Hanafi, M. (2005). A simple continuum regression approach. Journal of Chemometrics, 19, 387–392.

R Development Core Team (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org .

Russett, B.M. (1964). Inequality and instability: the relation of land tenure to politics. World Politics, 16, 442–454.

Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1), Article 32.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. New York: Cambridge University Press.

Takane, Y., & Hwang, H. (2007). Regularized linear and kernel redundancy analysis. Computational Statistics & Data Analysis, 52, 394–405.

Takane, Y., Hwang, H., & Abdi, H. (2008). Regularized multiple-set canonical correlation analysis. Psychometrika, 73, 753–775.

Ten Berge, J.M.F. (1988). Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations. Psychometrika, 53, 487–494.

Tenenhaus, A. (2010). Kernel generalized canonical correlation analysis. In 42ièmes journées de statistique (JdS’10), Marseille, France, May 24–28.

Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management & Business Excellence, 19, 871–886.

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159–205.

Tenenhaus, M., & Hanafi, M. (2010). A bridge between PLS path modeling and multi-block data analysis. In V. Esposito Vinzi, J. Henseler, W. Chin, & H. Wang (Eds.), Handbook of partial least squares (PLS): concepts, methods and applications (pp. 99–123). Berlin: Springer.

Tucker, L.R. (1958). An inter-battery method of factor analysis. Psychometrika, 23, 111–136.

Van de Geer, J.P. (1984). Linear relations among k sets of variables. Psychometrika, 4(9), 70–94.

Vinod, H.D. (1976). Canonical ridge and econometrics of joint production. Journal of Econometrics, 4, 147–166.

Vivien, M., & Sabatier, R. (2003). Generalized orthogonal multiple co-inertia analysis (-PLS): new multiblock component and regression methods. Journal of Chemometrics, 17, 287–301.

Westerhuis, J.A., Kourti, T., & MacGregor, J.F. (1998). Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics, 12, 301–321.

Wold, H. (1982). Soft modeling: the basic design and some extensions. In K.G. Jöreskog & H. Wold (Eds.), Systems under indirect observation, Part 2 (pp. 1–54). Amsterdam: North-Holland.

Wold, H. (1985). In S. Kotz & N.L. Johnson (Eds.), Encyclopedia of statistical sciences. Partial least squares (Vol. 6, pp. 581–591). New York: Wiley.

Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In A. Ruhe & B. Kåstrøm (Eds.), Lecture notes in mathematics. Proc. conf. matrix pencils, March 1982, (pp. 286–293). Heidelberg: Springer.