Grain refinement and superplastic flow in friction stir processed Ti–15V–3Cr–3Sn–3Al alloy

Journal of Alloys and Compounds - Tập 803 - Trang 901-911 - 2019
Wenjing Zhang1,2, Huihong Liu2, Hua Ding1, Hidetoshi Fujii2
1School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Tài liệu tham khảo

Alabort, 2015, Superplasticity in Ti–6Al–4V: characterisation, modelling and applications, Acta Mater., 95, 428, 10.1016/j.actamat.2015.04.056 Zhang, 2018, Hot deformation behavior and processing maps of Ti–6Al–4V alloy with starting fully lamellar structure, J. Mater. Res., 33, 3677, 10.1557/jmr.2018.331 Yoon, 2015, Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding, Mater. Des., 88, 1269, 10.1016/j.matdes.2015.09.128 Mironov, 2018, Friction-stir welding and processing of Ti-6Al-4V titanium alloy: a review, J. Mater. Sci. Technol., 34, 58, 10.1016/j.jmst.2017.10.018 Zhang, 2018, Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy, Mater. Sci. Eng. A, 727, 90, 10.1016/j.msea.2018.03.009 Ratochka, 2018, Superplastic deformation behavior of Ti-4Al-2V alloy governed by its structure and precipitation phase evolution, Mater. Sci. Eng. A, 731, 577, 10.1016/j.msea.2018.06.094 Zou, 2018, A step deformation method for superplasticity improvement of coarse-grained Ti–15V–3Cr−3Sn−3Al, Chin. J. Aeronaut., 31, 1619, 10.1016/j.cja.2017.11.003 Zhang, 2013, Superplastic behavior and deformation mechanism of Ti600 alloy, Mater. Sci. Eng. A, 560, 700, 10.1016/j.msea.2012.10.016 Zhang, 2018, Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 732, 398, 10.1016/j.msea.2018.07.010 Alabort, 2016, On the mechanisms of superplasticity in Ti–6Al–4V, Acta Mater., 105, 449, 10.1016/j.actamat.2015.12.003 Tan, 2007, Superplasticity studies in a beta titanium alloy, Arch. Mater. Sci. and Eng., 28, 717 Du, 2016, Low-temperature superplastic behavior of beta titanium alloy, Mater. Sci. Eng. A, 650, 414, 10.1016/j.msea.2015.10.065 Wu, 2015, Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti–6Al–4V joint, Scripta Mater., 98, 44, 10.1016/j.scriptamat.2014.11.011 Wu, 2016, Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint, Scripta Mater., 122, 26, 10.1016/j.scriptamat.2016.05.020 Mironov, 2010, Microstructural evolution during friction stir welding of Ti–15V–3Cr–3Al–3Sn alloy, Mater. Sci. Eng. A, 527, 7498, 10.1016/j.msea.2010.08.074 Liu, 2018, Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding, Mater. Sci. Eng. A, 711, 140, 10.1016/j.msea.2017.11.006 Liu, 2018, Elucidation of microstructural evolution of beta-type titanium alloy joint during friction stir welding using liquid CO2 cooling, Mater. Char., 145, 490, 10.1016/j.matchar.2018.09.005 Fujii, 2006, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429, 50, 10.1016/j.msea.2006.04.118 Langdon, 1994, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42, 2437, 10.1016/0956-7151(94)90322-0 Shahmir, 2018, Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 718, 198, 10.1016/j.msea.2018.01.091 Han, 2017, Superplasticity in a lean Fe-Mn-Al steel, Nat. Commun., 8, 751, 10.1038/s41467-017-00814-y Liu, 2012, High strain rate superplasticity in a micro-grained Al–Mg–Sc alloy with predominant high angle grain boundaries, J. Mater. Sci. Technol., 28, 1025, 10.1016/S1005-0302(12)60168-6 Malopheyev, 2016, Superplasticity of friction-stir welded Al–Mg–Sc sheets with ultrafine-grained microstructure, Mater. Sci. Eng. A, 649, 85, 10.1016/j.msea.2015.09.106 Yang, 2012, Influence of texture on superplastic behavior of friction stir processed ZK60 magnesium alloy, Mater. Sci. Eng. A, 556, 671, 10.1016/j.msea.2012.07.046 Yang, 2013, Enhanced superplasticity in friction stir processed Mg–Gd–Y–Zr alloy, J. Alloy. Comp., 551, 61, 10.1016/j.jallcom.2012.10.002 Zhang, 2018, Effect of initial microstructure on grain refinement and enhanced low temperature superplaticity in friction stir processed Ti-6Al-4V alloy, Defect Diffusion Forum, 385, 189, 10.4028/www.scientific.net/DDF.385.189 Langdon, 1982, The mechanical properties of superplastic materials, Metall. Trans. A, 13, 689, 10.1007/BF02642383 Park, 2008, Enhanced superplasticity utilizing dynamic globularization of Ti–6Al–4V alloy, Mater. Sci. Eng. A, 496, 150, 10.1016/j.msea.2008.05.001 Liu, 2012, Microstructural evolution in recrystallized and unrecrystallized Al–Mg–Sc alloys during superplastic deformation, Mater. Sci. Eng. A, 547, 55, 10.1016/j.msea.2012.03.076 Langdon, 2018, Thirty years of superplastic ultrafine-grained materials: examining the legacy of oscar kaibyshev, Defect Diffusion Forum, 385, 3, 10.4028/www.scientific.net/DDF.385.3 Langdon, 2009, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci., 44, 5998, 10.1007/s10853-009-3780-5 Salishchev, 1994, Submicrocrystalline and nanocrystalline structure formation in materials and search for outstanding superplastic properties, Mater. Sci. Forum, 170–172, 121, 10.4028/www.scientific.net/MSF.170-172.121