Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes
Tài liệu tham khảo
Baranello, 2014, CTCF and cohesin cooperate to organize the 3D structure of the mammalian genome, Proc. Natl. Acad. Sci. USA, 111, 889, 10.1073/pnas.1321957111
Bell, 1999, The protein CTCF is required for the enhancer blocking activity of vertebrate insulators, Cell, 98, 387, 10.1016/S0092-8674(00)81967-4
Boyer, 2006, Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, 441, 349, 10.1038/nature04733
Bracken, 2006, Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions, Genes Dev., 20, 1123, 10.1101/gad.381706
Cavalli, 2013, Functional implications of genome topology, Nat. Struct. Mol. Biol., 20, 290, 10.1038/nsmb.2474
Chepelev, 2012, Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization, Cell Res., 22, 490, 10.1038/cr.2012.15
Cuddapah, 2009, Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains, Genome Res., 19, 24, 10.1101/gr.082800.108
de Wit, 2013, The pluripotent genome in three dimensions is shaped around pluripotency factors, Nature, 501, 227, 10.1038/nature12420
DeMare, 2013, The genomic landscape of cohesin-associated chromatin interactions, Genome Res., 23, 1224, 10.1101/gr.156570.113
Denholtz, 2013, Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization, Cell Stem Cell, 13, 602, 10.1016/j.stem.2013.08.013
Dixon, 2012, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376, 10.1038/nature11082
Dowen, 2013, Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements, Stem Cell Rev., 1, 371, 10.1016/j.stemcr.2013.09.002
Essafi, 2011, A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression, Dev. Cell, 21, 559, 10.1016/j.devcel.2011.07.014
Felsenfeld, 2004, Chromatin boundaries and chromatin domains, Cold Spring Harb. Symp. Quant. Biol., 69, 245, 10.1101/sqb.2004.69.245
Filippova, 2014, Identification of alternative topological domains in chromatin, Algorithms Mol. Biol., 9, 14, 10.1186/1748-7188-9-14
Fullwood, 2009, An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, 462, 58, 10.1038/nature08497
Gibcus, 2013, The hierarchy of the 3D genome, Mol. Cell, 49, 773, 10.1016/j.molcel.2013.02.011
Goh, 2012, Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) for mapping chromatin interactions and understanding transcription regulation, J. Vis. Exp., 10.3791/3770
Gorkin, 2014, The 3D genome in transcriptional regulation and pluripotency, Cell Stem Cell, 14, 762, 10.1016/j.stem.2014.05.017
Gröschel, 2014, A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia, Cell, 157, 369, 10.1016/j.cell.2014.02.019
Guo, 2011, CTCF-binding elements mediate control of V(D)J recombination, Nature, 477, 424, 10.1038/nature10495
Handoko, 2011, CTCF-mediated functional chromatin interactome in pluripotent cells, Nat. Genet., 43, 630, 10.1038/ng.857
Hawkins, 2011, Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency, Cell Res., 21, 1393, 10.1038/cr.2011.146
Hnisz, 2013, Super-enhancers in the control of cell identity and disease, Cell, 155, 934, 10.1016/j.cell.2013.09.053
Kagey, 2010, Mediator and cohesin connect gene expression and chromatin architecture, Nature, 467, 430, 10.1038/nature09380
Kaspi, 2013, Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6, Stem Cells, 31, 2266, 10.1002/stem.1465
Kieffer-Kwon, 2013, Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation, Cell, 155, 1507, 10.1016/j.cell.2013.11.039
Kim, 2007, Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome, Cell, 128, 1231, 10.1016/j.cell.2006.12.048
Lee, 2013, Transcriptional regulation and its misregulation in disease, Cell, 152, 1237, 10.1016/j.cell.2013.02.014
Lee, 2006, Control of developmental regulators by Polycomb in human embryonic stem cells, Cell, 125, 301, 10.1016/j.cell.2006.02.043
Lelli, 2012, Disentangling the many layers of eukaryotic transcriptional regulation, Annu. Rev. Genet., 46, 43, 10.1146/annurev-genet-110711-155437
Li, 2010, ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing, Genome Biol., 11, R22, 10.1186/gb-2010-11-2-r22
Li, 2012, Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation, Cell, 148, 84, 10.1016/j.cell.2011.12.014
Margueron, 2011, The Polycomb complex PRC2 and its mark in life, Nature, 469, 343, 10.1038/nature09784
Merkenschlager, 2013, CTCF and cohesin: linking gene regulatory elements with their targets, Cell, 152, 1285, 10.1016/j.cell.2013.02.029
Meuleman, 2013, Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence, Genome Res., 23, 270, 10.1101/gr.141028.112
Naumova, 2013, Organization of the mitotic chromosome, Science, 342, 948, 10.1126/science.1236083
Nègre, 2006, Chromosomal distribution of PcG proteins during Drosophila development, PLoS Biol., 4, e170, 10.1371/journal.pbio.0040170
Ng, 2011, The transcriptional and signalling networks of pluripotency, Nat. Cell Biol., 13, 490, 10.1038/ncb0511-490
Nora, 2012, Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, 485, 381, 10.1038/nature11049
Ong, 2014, CTCF: an architectural protein bridging genome topology and function, Nat. Rev. Genet., 15, 234, 10.1038/nrg3663
Orkin, 2011, Chromatin connections to pluripotency and cellular reprogramming, Cell, 145, 835, 10.1016/j.cell.2011.05.019
Parelho, 2008, Cohesins functionally associate with CTCF on mammalian chromosome arms, Cell, 132, 422, 10.1016/j.cell.2008.01.011
Phillips, 2009, CTCF: master weaver of the genome, Cell, 137, 1194, 10.1016/j.cell.2009.06.001
Phillips-Cremins, 2013, Chromatin insulators: linking genome organization to cellular function, Mol. Cell, 50, 461, 10.1016/j.molcel.2013.04.018
Phillips-Cremins, 2013, Architectural protein subclasses shape 3D organization of genomes during lineage commitment, Cell, 153, 1281, 10.1016/j.cell.2013.04.053
Roeder, 2005, Transcriptional regulation and the role of diverse coactivators in animal cells, FEBS Lett., 579, 909, 10.1016/j.febslet.2004.12.007
Rubio, 2008, CTCF physically links cohesin to chromatin, Proc. Natl. Acad. Sci. USA, 105, 8309, 10.1073/pnas.0801273105
Sanyal, 2012, The long-range interaction landscape of gene promoters, Nature, 489, 109, 10.1038/nature11279
Schaaf, 2013, Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes, PLoS Genet., 9, e1003560, 10.1371/journal.pgen.1003560
Schwartz, 2006, Genome-wide analysis of Polycomb targets in Drosophila melanogaster, Nat. Genet., 38, 700, 10.1038/ng1817
Schwartz, 2012, Nature and function of insulator protein binding sites in the Drosophila genome, Genome Res., 22, 2188, 10.1101/gr.138156.112
Seitan, 2013, Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments, Genome Res., 23, 2066, 10.1101/gr.161620.113
Sexton, 2012, Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, 148, 458, 10.1016/j.cell.2012.01.010
Shen, 2012, A map of the cis-regulatory sequences in the mouse genome, Nature, 488, 116, 10.1038/nature11243
Smallwood, 2013, Genome organization and long-range regulation of gene expression by enhancers, Curr. Opin. Cell Biol., 25, 387, 10.1016/j.ceb.2013.02.005
Sofueva, 2013, Cohesin-mediated interactions organize chromosomal domain architecture, EMBO J., 32, 3119, 10.1038/emboj.2013.237
Soshnikova, 2010, Functional analysis of CTCF during mammalian limb development, Dev. Cell, 19, 819, 10.1016/j.devcel.2010.11.009
Spitz, 2012, Transcription factors: from enhancer binding to developmental control, Nat. Rev. Genet., 13, 613, 10.1038/nrg3207
Squazzo, 2006, Suz12 binds to silenced regions of the genome in a cell-type-specific manner, Genome Res., 16, 890, 10.1101/gr.5306606
Tolhuis, 2006, Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster, Nat. Genet., 38, 694, 10.1038/ng1792
Valenzuela, 2006, Chromatin insulators, Annu. Rev. Genet., 40, 107, 10.1146/annurev.genet.39.073003.113546
Van Bortle, 2012, Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains, Genome Res., 22, 2176, 10.1101/gr.136788.111
Wang, 2014, NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers, Proc. Natl. Acad. Sci. USA, 111, 705, 10.1073/pnas.1315023111
Wen, 2009, Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells, Nat. Genet., 41, 246, 10.1038/ng.297
Wendt, 2008, Cohesin mediates transcriptional insulation by CCCTC-binding factor, Nature, 451, 796, 10.1038/nature06634
Whyte, 2012, Enhancer decommissioning by LSD1 during embryonic stem cell differentiation, Nature, 482, 221, 10.1038/nature10805
Whyte, 2013, Master transcription factors and mediator establish super-enhancers at key cell identity genes, Cell, 153, 307, 10.1016/j.cell.2013.03.035
Young, 2011, Control of the embryonic stem cell state, Cell, 144, 940, 10.1016/j.cell.2011.01.032
Zuin, 2014, Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells, Proc. Natl. Acad. Sci. USA, 111, 996, 10.1073/pnas.1317788111
Zhang, 2013, Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations, Nature, 504, 306, 10.1038/nature12716