Periodic solutions of a periodic delay predator-prey system

Proceedings of the American Mathematical Society - Tập 127 Số 5 - Trang 1331-1335
Yongkun Li1
1Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China#TAB#

Tóm tắt

The existence of a positive periodic solution for { d H ( t ) d t = r ( t ) H ( t ) [ 1 H ( t τ ( t ) ) K ( t ) ] α ( t ) H ( t ) P ( t ) ,   d P ( t ) d t = b ( t ) P ( t ) + β ( t ) P ( t ) H ( t σ ( t ) ) \begin{equation*} \begin {cases} \frac {\mathrm {d}H(t)}{\mathrm {d}t}=r(t)H(t) \left [1-\frac {H(t-\tau (t))}{K(t)}\right ] -\alpha (t)H(t) P(t),\ \frac {\mathrm {d}P(t)}{\mathrm {d}t}=-b(t)P(t)+\beta (t)P(t)H(t-\sigma (t)) \end{cases} \end{equation*} is established, where r r , K K , α \alpha , b b , β \beta are positive periodic continuous functions with period ω > 0 \omega >0 , and τ \tau , σ \sigma are periodic continuous functions with period ω \omega .

Từ khóa


Tài liệu tham khảo

Freedman, H. I., 1992, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23, 689, 10.1137/0523035

Kuang, Yang, 1993, Delay differential equations with applications in population dynamics, 191

R. M. May, Stability and Complexity in Model Ecosystems, Princeton Univ. Press, Princeton, NJ, 1974.

Gaines, Robert E., 1977, Coincidence degree, and nonlinear differential equations, 10.1007/BFb0089537