Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease
Tài liệu tham khảo
Baiyee, 2019, Trichoderma spirale Tdisplays biocontrol activity against leaf spot on Lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria, Biol. Contr., 129, 195, 10.1016/j.biocontrol.2018.10.018
Cardoso, 2010, Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. [Research Support, Non-U.S. Gov't], Genet. Mol. Res., 9, 231, 10.4238/vol9-1gmr688
Chiang, 2017, A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy, Ann. Appl. Biol., 171, 139, 10.1111/aab.12362
Cooney, 1997, Microbial transformation of the Trichoderma metabolite 6-n-Pentyl-2H-pyran-2-one, J. Nat. Prod., 60, 1242, 10.1021/np970337n
da Silva Ribeiro, 2018, Bioprospection of culturable endophytic fungi associated with the ornamental plant pachystachys lutea, Curr. Microbiol., 75, 588, 10.1007/s00284-017-1421-9
Das, 2014, Potential of fungicides on the growth and development of Sclerotium rolfsii Sacc. In vitro, International Journal of Scientific and Research Publications, 4, 1
El-Katatny, 2000, Production of chitinase and β-1,3 glucanase by Trichoderma hazianum for control of the phytopathogenic fungus Sclerotium rolfsii, Food Technol. Biotechnol., 38, 173
Gajera, 2016, Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. [Research Support, Non-U.S. Gov't], Infect. Genet. Evol., 45, 383, 10.1016/j.meegid.2016.09.026
Herath, 2015, Isolation and characterization of Trichoderma erinaceum for antagonistic activity against Rhizoctonia solani, Current Research in Environment & Applied Mycology, 5, 120, 10.5943/cream/5/2/5
Hong, 2017, Antifungal activity and expression patterns of extracellular chitinase and beta-1,3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan, Microb. Pathog., 110, 159, 10.1016/j.micpath.2017.06.038
Koike, 2004, Southern blight of Jerusalem artichoke caused by Sclerotium rolfsii in California, Plant Dis., 88, 769, 10.1094/PDIS.2004.88.7.769B
Lahlali, 2010, Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. [Evaluation Study], FEMS Microbiol. Lett., 311, 152, 10.1111/j.1574-6968.2010.02084.x
Lee, 2017, Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis, J. Antibiot. (Tokyo), 70, 737, 10.1038/ja.2017.39
Lu, 2012, Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities, Evid Based Complement Alternat Med, 2012, 10.1155/2012/382742
Lynn E, 1999, Production and toxicity of 2,3-dihydro-5-hydroxy-2-methyl-4H-1-benzopyran-4-one by Phialophora gregata, Phytochemistry, 50, 1337, 10.1016/S0031-9422(98)00708-0
Nadeau, 2011, Polyketides produced by Daldinia loculata cultured from Northern Manitoba, Tetrahedron Lett., 52, 1697, 10.1016/j.tetlet.2011.01.150
Naglot, 2015, Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India, Plant Pathol. J., 31, 278, 10.5423/PPJ.OA.01.2015.0004
Ozgonen, 2010, The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut, Afr. J. Agric. Res., 5, 128
Rahman, 2009, Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane, MYCOBIOLOGY, 37, 277, 10.4489/MYCO.2009.37.4.277
Sennoi, 2010, Pathogenicity test of Sclerotium rolfsii, a causal agent of Jerusalem artichoke (Helianthus tuberosus L.) stem rot, AJPS (Asian J. Plant Sci.), 281, 10.3923/ajps.2010.281.284
Sennoi, 2013, Genotypic variation of resistance to southern stem rot of Jerusalem artichoke caused by Sclerotium rolfsii, Euphytica, 190, 415, 10.1007/s10681-012-0813-y
Sennoi, 2013, Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.), Crop Protect., 54, 148, 10.1016/j.cropro.2013.08.011
Sohpal, 2010, MEGA biocentric software for sequence and phylogenetic analysis: a review. [Review], Int. J. Bioinf. Res. Appl., 6, 230, 10.1504/IJBRA.2010.034072
Song, 2017, Simultaneous production of bioethanol and value-added d-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers, Bioresour. Technol., 244, 1068, 10.1016/j.biortech.2017.08.079
Verma, 2017, Structural elucidation of bioactive secondary metabolites from endophytic fungus, Asian J. Pharmaceut. Clin. Res., 10, 395, 10.22159/ajpcr.2017.v10i7.18909
Vinayarani, 2018, Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani, World J. Microbiol. Biotechnol., 34, 49, 10.1007/s11274-018-2431-x
Waqas, 2012, Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. [Research Support, Non-U.S. Gov't], Molecules, 17, 10754, 10.3390/molecules170910754
Wonglom, 2020, Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa), Fungal Ecology, 43, 10.1016/j.funeco.2019.100867
Yang, 2015, The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. [Review], Biotechnol Rep (Amst), 5, 77, 10.1016/j.btre.2014.12.004
Yu, 2018, Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera, MYCOBIOLOGY, 46, 85, 10.1080/12298093.2018.1454008
Zucchi, 2008, Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. [Research Support, Non-U.S. Gov't], J. Appl. Microbiol., 105, 2153, 10.1111/j.1365-2672.2008.03940.x
