Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications
Tài liệu tham khảo
Beidaghi, 2014, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro- supercapacitors, Energy Environ Sci., 7, 867, 10.1039/c3ee43526a
Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297
Simon, 2013, Capacitive energy storage in nanostructured carbon-electrolyte systems, Acc. Chem. Res., 46, 1094, 10.1021/ar200306b
Brachet, 2014, All solid-state symmetrical activated carbon electrochemical double layer capacitors designed with ionogel electrolyte, ECS Electrochem, Lett., 3, A112
Negre, 2015, Solvent-free electrolytes for electrical double Layer capacitors, J. Electrochem. Soc., 162, A5037, 10.1149/2.0061505jes
Brandt, 2012, Adiponitrile-based electrochemical double layer capacitor, J. Power Sources., 204, 213, 10.1016/j.jpowsour.2011.12.025
Brandt, 2012, The influence of pore structure and surface groups on the performance of high voltage electrochemical double layer capacitors containing adiponitrile-based electrolyte, J. Electrochem. Soc., 159, A2053, 10.1149/2.074212jes
Béguin, 2014, Carbons and electrolytes for advanced supercapacitors, Adv. Mater., 26, 2219, 10.1002/adma.201304137
Ardizzone, 1990, Inner and outer active surface of RuO2 electrodes, Electrochim. Acta, 35, 263, 10.1016/0013-4686(90)85068-X
Frackowiak, 2007, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774, 10.1039/b618139m
Assresahegn, 2015, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon N. Y., 92, 362, 10.1016/j.carbon.2015.05.030
Pognon, 2011, Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon N. Y., 49, 1340, 10.1016/j.carbon.2010.11.055
Abiman, 2008, A mechanistic investigation into the covalent chemical derivatisation of graphite and glassy carbon surfaces using aryldiazonium salts, J. Phys. Org. Chem., 21, 433, 10.1002/poc.1331
Smith, 2009, Novel electroactive surface functionality from the coupling of an aryl diamine to carbon black, Electrochem. Commun., 11, 10, 10.1016/j.elecom.2008.10.014
Bélanger, 2011, Electrografting: a powerful method for surface modification, Chem. Soc. Rev., 40, 3995, 10.1039/c0cs00149j
Weissmann, 2012, Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor, Electrochim. Acta, 82, 250, 10.1016/j.electacta.2012.05.130
Allongue, 1997, Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 119, 201, 10.1021/ja963354s
Delamar, 1992, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 114, 5883, 10.1021/ja00040a074
Mooste, 2013, Oxygen reduction on thick anthraquinone films electrografted to glassy carbon, J. Electroanal. Chem., 702, 8, 10.1016/j.jelechem.2013.04.031
Toupin, 2007, Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem. C, 111, 5394, 10.1021/jp066868e
Le Comte, 2015, Spontaneous grafting of 9, 10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte, J. Mater. Chem. A, 3, 6146, 10.1039/C4TA05536E
Pognon, 2012, Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor, ACS, 4, 3788
Laforgue, 2005, Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations, Langmuir, 21, 6855, 10.1021/la047369c
Mesnage, 2012, Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces, Langmuir, 28, 11767, 10.1021/la3011103
De Villeneuve, 1997, Electrochemical formation of close-packed phenyl layers on Si (111), J. Phys. Chem. B., 101, 2415, 10.1021/jp962581d
Downard, 2000, Electrochemically assisted covalent modification of carbon electrodes, Electroanalysis, 12, 1085, 10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-A
Breton, 2008, Modification of carbon electrode with aryl groups having an aliphatic amine by electrochemical reduction of in situ generated diazonium cations, Langmuir, 24, 8711, 10.1021/la800578h
Kullapere, 2009, Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations, Electrochim. Acta, 54, 1961, 10.1016/j.electacta.2008.08.054
Quan, 2007, Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones, J. Am. Chem. Soc., 129, 12847, 10.1021/ja0743083
Mirkhalaf, 2004, Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes, Phys. Chem. Chem. Phys., 6, 1321, 10.1039/b315963a
Sljukic, 2004, Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts, Phys. Chem. Chem. Phys., 6, 992, 10.1039/B316412H
Ghanem, 2012, Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis, Electrochim. Acta, 68, 74, 10.1016/j.electacta.2012.02.027
Anjos, 2013, Pseudocapacitance and performance stability of quinone-coated carbon onions, Nano Energy, 2, 702, 10.1016/j.nanoen.2013.08.003
Pandurangappa, 2002, Homogeneous chemical derivatisation of carbon particles: a novel method for functionalising carbon surfaces, Analyst, 127, 1568, 10.1039/b209711g
Kibena, 2014, Electrochemical behaviour of HOPG and CVD-grown graphene electrodes modified with thick anthraquinone films by diazonium reduction, Electroanalysis, 26, 2619, 10.1002/elan.201400290
Smith, 2009, Voltammetric quantification of the spontaneous chemical modification of carbon black by diazonium coupling, Electrochim. Acta, 54, 2305, 10.1016/j.electacta.2008.10.047
Pognon, 2011, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon, J. Power Sources, 196, 4117, 10.1016/j.jpowsour.2010.09.097
Le Comte, 2014, Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media, Electrochim. Acta, 137, 447, 10.1016/j.electacta.2014.05.155
Shul, 2016, Self-discharge of electrochemical capacitors based on soluble or grafted quinone, Phys. Chem. Chem. Phys., 18, 19137, 10.1039/C6CP02356H
Y. Yu, C.E. Adams, Capacitors and supercapacitors containing modified carbon products, US Patent 6,522,522, 2003.
Algharaibeh, 2011, An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun., 13, 147, 10.1016/j.elecom.2010.11.036
Algharaibeh, 2009, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor, J. Power Sources, 187, 640, 10.1016/j.jpowsour.2008.11.012
Dash, 2006, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon N. Y., 44, 2489, 10.1016/j.carbon.2006.04.035
Huang, 2016, On-chip and freestanding elastic carbon films for micro-supercapacitors, Science, 351, 691, 10.1126/science.aad3345
Létiche, 2017, Sputtered titanium carbide thick film for high areal energy on chip carbon-based micro-supercapacitors, Adv. Funct. Mater., 1
Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760, 10.1126/science.1132195
Brousse, 2016, Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes, J. Power Sources, 328, 520, 10.1016/j.jpowsour.2016.08.017
Dyatkin, 2016, High capacitance of coarse-grained carbide derived carbon electrodes, J. Power Sources, 306, 32, 10.1016/j.jpowsour.2015.11.099
Seinberg, 2008, Spontaneous modification of glassy carbon surface with anthraquinone from the solutions of its diazonium derivative: An oxygen reduction study, J. Electroanal. Chem., 624, 151, 10.1016/j.jelechem.2008.09.002
Pinson, 2005, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev., 34, 429, 10.1039/b406228k
Le Comte, 2016, Chloroanthraquinone as a grafted probe molecule to investigate grafting yield on carbon powder, Electrochim. Acta, 197, 139, 10.1016/j.electacta.2016.01.219
Gogotsi, 2011, True performance metrics in electrochemical energy storage, Science, 334, 917, 10.1126/science.1213003
Isikli, 2012, Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon, J. Power Sources, 206, 53, 10.1016/j.jpowsour.2012.01.088
Madec, 2012, In situ redox functionalization of composite electrodes for high power-high energy electrochemical storage systems via a non-covalent approach, Energy Environ Sci., 5, 5379, 10.1039/C1EE02490F
Tamam, 2007, Langmuir films of anthracene derivatives on liquid mercury II: Asymmetric molecules, J. Phys. Chem. C, 111, 2580, 10.1021/jp063937g
Lei, 2010, MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor, Electrochim. Acta, 55, 7454, 10.1016/j.electacta.2010.03.012
Le Comte, 2013, Determination of the quinone-loading of a modified carbon powder-based electrode for electrochemical capacitor, Electrochemistry, 81, 863, 10.5796/electrochemistry.81.863
Segalini, 2010, Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes, Electrochim. Acta, 55, 7489, 10.1016/j.electacta.2010.01.003
An, 2015, Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage, RSC Adv., 5, 23942, 10.1039/C4RA16092D
Jürmann, 2007, The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes, Electrochim. Acta, 53, 390, 10.1016/j.electacta.2007.03.053