Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications

Electrochimica Acta - Tập 246 - Trang 391-398 - 2017
K. Brousse1,2, C. Martin3, A.L. Brisse3,4, C. Lethien2,5, P. Simon1,2, P.L. Taberna1,2, T. Brousse2,4
1CIRIMAT, Université de Toulouse, UMRCNRS 5085, INPT, UPS, 118 route de Narbonne, 31062, Toulouse Cedex 09, France
2Réseau sur le Stockage Electrochimique de l’Energie, FR CNRS no. 3459, France
3CAPACITES-iTIS!, Polytech’Nantes, Rue Christian Pauc, 44300 Nantes, France
4Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP32229, 44322 Nantes Cedex 3, France
5Institut d’Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520 – IEMN, F-59000 Lille, France

Tài liệu tham khảo

Beidaghi, 2014, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro- supercapacitors, Energy Environ Sci., 7, 867, 10.1039/c3ee43526a Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297 Simon, 2013, Capacitive energy storage in nanostructured carbon-electrolyte systems, Acc. Chem. Res., 46, 1094, 10.1021/ar200306b Brachet, 2014, All solid-state symmetrical activated carbon electrochemical double layer capacitors designed with ionogel electrolyte, ECS Electrochem, Lett., 3, A112 Negre, 2015, Solvent-free electrolytes for electrical double Layer capacitors, J. Electrochem. Soc., 162, A5037, 10.1149/2.0061505jes Brandt, 2012, Adiponitrile-based electrochemical double layer capacitor, J. Power Sources., 204, 213, 10.1016/j.jpowsour.2011.12.025 Brandt, 2012, The influence of pore structure and surface groups on the performance of high voltage electrochemical double layer capacitors containing adiponitrile-based electrolyte, J. Electrochem. Soc., 159, A2053, 10.1149/2.074212jes Béguin, 2014, Carbons and electrolytes for advanced supercapacitors, Adv. Mater., 26, 2219, 10.1002/adma.201304137 Ardizzone, 1990, Inner and outer active surface of RuO2 electrodes, Electrochim. Acta, 35, 263, 10.1016/0013-4686(90)85068-X Frackowiak, 2007, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774, 10.1039/b618139m Assresahegn, 2015, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon N. Y., 92, 362, 10.1016/j.carbon.2015.05.030 Pognon, 2011, Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon N. Y., 49, 1340, 10.1016/j.carbon.2010.11.055 Abiman, 2008, A mechanistic investigation into the covalent chemical derivatisation of graphite and glassy carbon surfaces using aryldiazonium salts, J. Phys. Org. Chem., 21, 433, 10.1002/poc.1331 Smith, 2009, Novel electroactive surface functionality from the coupling of an aryl diamine to carbon black, Electrochem. Commun., 11, 10, 10.1016/j.elecom.2008.10.014 Bélanger, 2011, Electrografting: a powerful method for surface modification, Chem. Soc. Rev., 40, 3995, 10.1039/c0cs00149j Weissmann, 2012, Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor, Electrochim. Acta, 82, 250, 10.1016/j.electacta.2012.05.130 Allongue, 1997, Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 119, 201, 10.1021/ja963354s Delamar, 1992, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 114, 5883, 10.1021/ja00040a074 Mooste, 2013, Oxygen reduction on thick anthraquinone films electrografted to glassy carbon, J. Electroanal. Chem., 702, 8, 10.1016/j.jelechem.2013.04.031 Toupin, 2007, Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem. C, 111, 5394, 10.1021/jp066868e Le Comte, 2015, Spontaneous grafting of 9, 10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte, J. Mater. Chem. A, 3, 6146, 10.1039/C4TA05536E Pognon, 2012, Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor, ACS, 4, 3788 Laforgue, 2005, Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations, Langmuir, 21, 6855, 10.1021/la047369c Mesnage, 2012, Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces, Langmuir, 28, 11767, 10.1021/la3011103 De Villeneuve, 1997, Electrochemical formation of close-packed phenyl layers on Si (111), J. Phys. Chem. B., 101, 2415, 10.1021/jp962581d Downard, 2000, Electrochemically assisted covalent modification of carbon electrodes, Electroanalysis, 12, 1085, 10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-A Breton, 2008, Modification of carbon electrode with aryl groups having an aliphatic amine by electrochemical reduction of in situ generated diazonium cations, Langmuir, 24, 8711, 10.1021/la800578h Kullapere, 2009, Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations, Electrochim. Acta, 54, 1961, 10.1016/j.electacta.2008.08.054 Quan, 2007, Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones, J. Am. Chem. Soc., 129, 12847, 10.1021/ja0743083 Mirkhalaf, 2004, Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes, Phys. Chem. Chem. Phys., 6, 1321, 10.1039/b315963a Sljukic, 2004, Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts, Phys. Chem. Chem. Phys., 6, 992, 10.1039/B316412H Ghanem, 2012, Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis, Electrochim. Acta, 68, 74, 10.1016/j.electacta.2012.02.027 Anjos, 2013, Pseudocapacitance and performance stability of quinone-coated carbon onions, Nano Energy, 2, 702, 10.1016/j.nanoen.2013.08.003 Pandurangappa, 2002, Homogeneous chemical derivatisation of carbon particles: a novel method for functionalising carbon surfaces, Analyst, 127, 1568, 10.1039/b209711g Kibena, 2014, Electrochemical behaviour of HOPG and CVD-grown graphene electrodes modified with thick anthraquinone films by diazonium reduction, Electroanalysis, 26, 2619, 10.1002/elan.201400290 Smith, 2009, Voltammetric quantification of the spontaneous chemical modification of carbon black by diazonium coupling, Electrochim. Acta, 54, 2305, 10.1016/j.electacta.2008.10.047 Pognon, 2011, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon, J. Power Sources, 196, 4117, 10.1016/j.jpowsour.2010.09.097 Le Comte, 2014, Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media, Electrochim. Acta, 137, 447, 10.1016/j.electacta.2014.05.155 Shul, 2016, Self-discharge of electrochemical capacitors based on soluble or grafted quinone, Phys. Chem. Chem. Phys., 18, 19137, 10.1039/C6CP02356H Y. Yu, C.E. Adams, Capacitors and supercapacitors containing modified carbon products, US Patent 6,522,522, 2003. Algharaibeh, 2011, An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun., 13, 147, 10.1016/j.elecom.2010.11.036 Algharaibeh, 2009, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor, J. Power Sources, 187, 640, 10.1016/j.jpowsour.2008.11.012 Dash, 2006, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon N. Y., 44, 2489, 10.1016/j.carbon.2006.04.035 Huang, 2016, On-chip and freestanding elastic carbon films for micro-supercapacitors, Science, 351, 691, 10.1126/science.aad3345 Létiche, 2017, Sputtered titanium carbide thick film for high areal energy on chip carbon-based micro-supercapacitors, Adv. Funct. Mater., 1 Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760, 10.1126/science.1132195 Brousse, 2016, Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes, J. Power Sources, 328, 520, 10.1016/j.jpowsour.2016.08.017 Dyatkin, 2016, High capacitance of coarse-grained carbide derived carbon electrodes, J. Power Sources, 306, 32, 10.1016/j.jpowsour.2015.11.099 Seinberg, 2008, Spontaneous modification of glassy carbon surface with anthraquinone from the solutions of its diazonium derivative: An oxygen reduction study, J. Electroanal. Chem., 624, 151, 10.1016/j.jelechem.2008.09.002 Pinson, 2005, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev., 34, 429, 10.1039/b406228k Le Comte, 2016, Chloroanthraquinone as a grafted probe molecule to investigate grafting yield on carbon powder, Electrochim. Acta, 197, 139, 10.1016/j.electacta.2016.01.219 Gogotsi, 2011, True performance metrics in electrochemical energy storage, Science, 334, 917, 10.1126/science.1213003 Isikli, 2012, Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon, J. Power Sources, 206, 53, 10.1016/j.jpowsour.2012.01.088 Madec, 2012, In situ redox functionalization of composite electrodes for high power-high energy electrochemical storage systems via a non-covalent approach, Energy Environ Sci., 5, 5379, 10.1039/C1EE02490F Tamam, 2007, Langmuir films of anthracene derivatives on liquid mercury II: Asymmetric molecules, J. Phys. Chem. C, 111, 2580, 10.1021/jp063937g Lei, 2010, MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor, Electrochim. Acta, 55, 7454, 10.1016/j.electacta.2010.03.012 Le Comte, 2013, Determination of the quinone-loading of a modified carbon powder-based electrode for electrochemical capacitor, Electrochemistry, 81, 863, 10.5796/electrochemistry.81.863 Segalini, 2010, Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes, Electrochim. Acta, 55, 7489, 10.1016/j.electacta.2010.01.003 An, 2015, Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage, RSC Adv., 5, 23942, 10.1039/C4RA16092D Jürmann, 2007, The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes, Electrochim. Acta, 53, 390, 10.1016/j.electacta.2007.03.053