Compactness for the Commutator of the Multilinear Fourier Multiplier on the Morrey Space

Acta Mathematica Vietnamica - Tập 41 - Trang 661-676 - 2015
Peng Li1, Jiang Zhou1
1College of Mathematics and System Sciences, Xinjiang University, Urumqi, People’s Republic of China

Tóm tắt

Given s 1,…, s m ∈ (n/2, n], let T σ be a multilinear Fourier multiplier operator associated with a multilinear multiplier σ satisfying a Sobolev regularity condition $\sup _{\ell \in \mathbb {Z}}\|\sigma _{\ell }\|_{W^{s_{1},\ldots ,s_{m}}(\mathbb {R}^{mn})}<\infty .$ By the strongly precompactness of Banach space, the authors prove that if $b_{1},\ldots ,b_{m}\in CMO(\mathbb {R}^{n})$ , then the commutator T σ,Σb is a compact operator from the product Morrey space $L^{p_{1},\lambda }(\mathbb {R}^{n})\times \cdots \times L^{p_{m},\lambda }(\mathbb {R}^{n})$ to the Morrey space $L^{p,\lambda }(\mathbb {R}^{n})$ . As an application, the compactness of the commutator T σ,Σb from the product Morrey space $L^{p_{1},\lambda }(\mathbb {R}^{n})\times \cdots \times L^{p_{m},\lambda }(\mathbb {R}^{n})$ to the Morrey space $L^{p,\lambda }(\mathbb {R}^{n})$ is also obtained under the Sobolev regularity condition $\sup _{\ell \in \mathbb {Z}}\|\sigma _{\ell }\|_{W^{s}(\mathbb {R}^{mn})}<\infty $ for s∈(m n/2, m n].

Tài liệu tham khảo

Bui, T.A., Duong, X.T.: Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers. Bull. Sci. Math. 137, 63–75 (2013) Bourdaud, G., Lanze de Cristoforis, M., Sickel, W.: Functional calculus on BMO and related spaces. J. Funct. Anal. 189, 515–538 (2002) Chen, Y., Ding, Y., Wang, X.: Compactness of commutators for singular integrals on Morrey spaces. Canad. J. Math. 64, 257–281 (2012) Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. 7(7), 273–279 (1987) Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978) Coifman, R.R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and P. D. E.. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984), Ann. Math. Stud. 112, Princeton Univ.Press, Princeton, NJ., 3–45 (1986) Coifman, R., Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977) Fujita, M., Tomita, N.: Weighted norm inequalities for multilinear Fourier multipliers. Trans. Am. Math. Soc. 364, 6335–6353 (2012) Grafakos, L., Miyachi, A., Tomita, N.: On multilinear Fourier multipliers of limited smoothness. Canad. J. Math. 65, 299–330 (2013) Grafakos, L., Si, Z.: The Hörmander type multiplier theorem for multilinear operators. J. Reine Angew. Math. 668, 133–147 (2012) Hu, G.: Compactness of the commutator of bilinear Fourier multiplier operator. Taiwan. J. Math. 18, 661–675 (2014) Hu, G., Lin, C.: Weighted norm inequalities for multilinear singular integral operators and applications. Anal. Appl. (Singap.) 12, 269–291 (2014) Hu, G., Yi, W.: Estimates for the commutators of bilinear Fourier multiplier. Czechoslov. Math. J. 63, 1113–1134 (2013) Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multiplier. Rev. Mat. Iberoamericana 29, 495–530 (2013) Tomita, N.: A Hörmander type multiplier theorem for multilinear operator. J. Funct. Anal. 259, 2028–2044 (2010) Wang, S., Jiang, Y., Li, P.: Weighted Morrey estimates for multilinear Fourier multiplier operators. Abstr. Appl. Anal. 2014(10), 570450 (2014). doi:10.1155/2014/570450 Zhou, J., Li, P.: Compactness of the commutator of multilinear Fourier multiplier operator on weighted Lebesgue space. J. Funct. Spaces. 2014(10), 606504 (2014). doi:10.1155/2014/606504