All-trans retinoic acid with daunorubicin or idarubicin for risk-adapted treatment of acute promyelocytic leukaemia: a matched-pair analysis of the PETHEMA LPA-2005 and IC-APL studies
Tóm tắt
Front-line treatment of acute promyelocytic leukaemia (APL) consists of all-trans retinoic acid (ATRA) and anthracycline-based chemotherapy. In this setting, a comparison of idarubicin and daunorubicin has never been carried out. Two similar clinical trials using ATRA and chemotherapy for newly diagnosed APL were compared using matched-pair analysis. One was conducted by the PETHEMA/HOVON group with idarubicin and the other by the International Consortium on APL (IC-APL) using daunorubicin. Three hundred and fifty patients from the PETHEMA/HOVON cohort were matched with 175 patients in the IC-APL cohort, adjusting for the significantly unbalanced presenting features of the two entire cohorts. Complete remission (CR) rate was significantly higher in the PETHEMA/HOVON (94 %) than in the IC-APL cohort (85 %) (P = 0.002). The distribution of causes of induction failure and the time to achieve CR were similar in both cohorts. Patients who achieved CR had comparable cumulative incidence of relapse and disease-free survival rates, but lower overall and event-free survivals were observed in the IC-APL cohort, which was mainly due to a higher death rate during induction therapy. A higher death rate during consolidation therapy was also observed in the IC-APL. These results show that daunorubicin and idarubicin have similar antileukaemic efficacy in terms of primary resistance, molecular persistence, as well as molecular and haematological relapse rates when combined with ATRA in treatment of APL. However, a higher toxic death rate during induction and consolidation therapy was observed in the IC-APL cohort. This trial was registered at
www.clinicaltrials.gov
as #NCT00408278 [ClinicalTrials.gov].
Tài liệu tham khảo
Rego EM, Kim HT, Ruiz-Argüelles GJ et al (2013) Improving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the International Consortium on APL. Blood 121:1935–1943. doi:10.1182/blood-2012-08-449918
Jácomo RH, Melo RAM, Souto FR et al (2007) Clinical features and outcomes of 134 Brazilians with acute promyelocytic leukemia who received ATRA and anthracyclines. Haematologica 92:1431–1432. doi:10.3324/haematol.10874
Sanz MA, Montesinos P, Rayón C et al (2010) Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood 115:5137–5146. doi:10.1182/blood-2010-01-266007
Adès L, Sanz MA, Chevret S et al (2008) Treatment of newly diagnosed acute promyelocytic leukemia (APL): a comparison of French-Belgian-Swiss and PETHEMA results. Blood 111:1078–1084. doi:10.1182/blood-2007-07-099978
Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655
Cheson BD, Bennett JM, Kopecky KJ et al (2003) Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21:4642–4649. doi:10.1200/JCO.2003.04.036
Sanz MA, Lo-Coco F, Martín G et al (2000) Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 96:1247–1253
Montesinos P, Bergua JM, Vellenga E et al (2009) Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood 113:775–783. doi:10.1182/blood-2008-07-168617
Diamond A, Sekhon JS (2013) Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev Econ Stat 95:932–945. doi:10.1162/REST_a_00318
Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16:1141–1154. doi:10.1214/aos/1176350951
Pepe MS, Mori M (1993) Kaplan—Meier, marginal or conditional probability curves in summarizing competing risks failure time data? Stat Med 12:737–751. doi:10.1002/sim.4780120803
Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121. doi:10.1056/NEJMoa1300874
Powell BL, Moser B, Stock W et al (2010) Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 116:3751–3757. doi:10.1182/blood-2010-02-269621
Iland HJ, Bradstock K, Supple SG et al (2012) All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 120:1570–1580. doi:10.1182/blood-2012-02-410746, quiz 1752
Gore SD, Gojo I, Sekeres MA et al (2010) Single cycle of arsenic trioxide-based consolidation chemotherapy spares anthracycline exposure in the primary management of acute promyelocytic leukemia. J Clin Oncol 28:1047–1053. doi:10.1200/JCO.2009.25.5158
Ravandi F, Estey E, Jones D et al (2009) Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol 27:504–510. doi:10.1200/JCO.2008.18.6130
Hu J, Liu Y-F, Wu C-F et al (2009) Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A 106:3342–3347. doi:10.1073/pnas.0813280106
Ghavamzadeh A, Alimoghaddam K, Rostami S et al (2011) Phase II study of single-agent arsenic trioxide for the front-line therapy of acute promyelocytic leukemia. J Clin Oncol 29:2753–2757. doi:10.1200/JCO.2010.32.2107
Mathews V, George B, Chendamarai E et al (2010) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol 28:3866–3871. doi:10.1200/JCO.2010.28.5031