The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution

Corrosion Science - Tập 137 - Trang 176-183 - 2018
Bintao Wu1, Zengxi Pan1, Siyuan Li2, Dominic Cuiuri1, Donghong Ding3, Huijun Li1
1School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
2Department of Materials Science, Fudan University, Shanghai 200433, China
3School of Mechatronic Engineering, Foshan University, Foshan Guangdong, 528000, China

Tài liệu tham khảo

Welsch, 1993 Dutta, 2016, The additive manufacturing of titanium alloys Baufeld, 2011, Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, J. Mater. Process. Technol., 211, 1146, 10.1016/j.jmatprotec.2011.01.018 Karlsson, 2013, Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti–6Al–4V powder fractions, J. Mater. Process. Technol., 213, 2109, 10.1016/j.jmatprotec.2013.06.010 Vaithilingam, 2016, Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications, Mater. Sci. Eng. C, 67, 294, 10.1016/j.msec.2016.05.054 Williams, 2016, Wire + arc additive manufacturing, Mater. Sci. Technol., 32, 641, 10.1179/1743284715Y.0000000073 Dai, 2016, Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution, Corros. Sci., 102, 484, 10.1016/j.corsci.2015.10.041 Dai, 2016, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes, Corros. Sci., 111, 703, 10.1016/j.corsci.2016.06.009 Yang, 2017, Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution, Metall. Mater. Trans. A, 48, 3583, 10.1007/s11661-017-4087-9 2014 2006 Amaya-Vazquez, 2012, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser, Corros. Sci., 56, 36, 10.1016/j.corsci.2011.11.006 Fonseca, 2001, Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy, Corros. Sci., 43, 547, 10.1016/S0010-938X(00)00107-4 Grosgogeat, 2004, Electrochemical studies of the corrosion behaviour of titanium and the Ti–6Al–4V alloy using electrochemical impedance spectroscopy, Bio-Med. Mater. Eng., 14, 323 Hsu, 2004, Investigation on the corrosion behavior of Ti–6Al–4V implant alloy by electrochemical techniques, Mater. Chem. Phys., 86, 269, 10.1016/j.matchemphys.2004.02.025 Wu, 2017, Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V, J. Mater. Process. Technol., 250, 304, 10.1016/j.jmatprotec.2017.07.037 Stanford, 2005, The martensitic transformation texture in Ti-6Al-4V, Mater. Sci. Forum, 459–457, 669, 10.4028/www.scientific.net/MSF.495-497.669 Ahmed, 1998, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A, 243, 206, 10.1016/S0921-5093(97)00802-2 Stanford, 2004, Crystallographic variant selection in Ti–6Al–4V, Acta Mater., 52, 5215, 10.1016/j.actamat.2004.07.034 SUI, 2008, Microstructures and hardness of Ti-6Al-4V alloy staging castings under centrifugal field, Trans. Nonferrous Met. Soc. China, 18, 291, 10.1016/S1003-6326(08)60051-5 Wang, 2013, Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V, Metall. Mater. Trans., 44, 968, 10.1007/s11661-012-1444-6 Chen, 2011, In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM, Electrochim. Acta, 56, 1746, 10.1016/j.electacta.2010.10.024 Argade, 2012, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58, 145, 10.1016/j.corsci.2012.01.021 Bai, 2017, Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline, Corros. Sci., 123, 289, 10.1016/j.corsci.2017.05.003 Fasasi, 2009, Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications, Mater. Sci. Eng. C, 29, 5, 10.1016/j.msec.2008.05.002 Tomashov, 1974, The passivation of alloys on titanium bases, Electrochim. Acta, 19, 159, 10.1016/0013-4686(74)85012-7