The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution
Tài liệu tham khảo
Welsch, 1993
Dutta, 2016, The additive manufacturing of titanium alloys
Baufeld, 2011, Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, J. Mater. Process. Technol., 211, 1146, 10.1016/j.jmatprotec.2011.01.018
Karlsson, 2013, Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti–6Al–4V powder fractions, J. Mater. Process. Technol., 213, 2109, 10.1016/j.jmatprotec.2013.06.010
Vaithilingam, 2016, Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications, Mater. Sci. Eng. C, 67, 294, 10.1016/j.msec.2016.05.054
Williams, 2016, Wire + arc additive manufacturing, Mater. Sci. Technol., 32, 641, 10.1179/1743284715Y.0000000073
Dai, 2016, Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution, Corros. Sci., 102, 484, 10.1016/j.corsci.2015.10.041
Dai, 2016, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes, Corros. Sci., 111, 703, 10.1016/j.corsci.2016.06.009
Yang, 2017, Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution, Metall. Mater. Trans. A, 48, 3583, 10.1007/s11661-017-4087-9
2014
2006
Amaya-Vazquez, 2012, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser, Corros. Sci., 56, 36, 10.1016/j.corsci.2011.11.006
Fonseca, 2001, Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy, Corros. Sci., 43, 547, 10.1016/S0010-938X(00)00107-4
Grosgogeat, 2004, Electrochemical studies of the corrosion behaviour of titanium and the Ti–6Al–4V alloy using electrochemical impedance spectroscopy, Bio-Med. Mater. Eng., 14, 323
Hsu, 2004, Investigation on the corrosion behavior of Ti–6Al–4V implant alloy by electrochemical techniques, Mater. Chem. Phys., 86, 269, 10.1016/j.matchemphys.2004.02.025
Wu, 2017, Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V, J. Mater. Process. Technol., 250, 304, 10.1016/j.jmatprotec.2017.07.037
Stanford, 2005, The martensitic transformation texture in Ti-6Al-4V, Mater. Sci. Forum, 459–457, 669, 10.4028/www.scientific.net/MSF.495-497.669
Ahmed, 1998, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A, 243, 206, 10.1016/S0921-5093(97)00802-2
Stanford, 2004, Crystallographic variant selection in Ti–6Al–4V, Acta Mater., 52, 5215, 10.1016/j.actamat.2004.07.034
SUI, 2008, Microstructures and hardness of Ti-6Al-4V alloy staging castings under centrifugal field, Trans. Nonferrous Met. Soc. China, 18, 291, 10.1016/S1003-6326(08)60051-5
Wang, 2013, Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V, Metall. Mater. Trans., 44, 968, 10.1007/s11661-012-1444-6
Chen, 2011, In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM, Electrochim. Acta, 56, 1746, 10.1016/j.electacta.2010.10.024
Argade, 2012, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58, 145, 10.1016/j.corsci.2012.01.021
Bai, 2017, Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline, Corros. Sci., 123, 289, 10.1016/j.corsci.2017.05.003
Fasasi, 2009, Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications, Mater. Sci. Eng. C, 29, 5, 10.1016/j.msec.2008.05.002
Tomashov, 1974, The passivation of alloys on titanium bases, Electrochim. Acta, 19, 159, 10.1016/0013-4686(74)85012-7