Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world
Tóm tắt
Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and quantify the influence of individual patterns of movement and decision-based pesticide management activities on potential exposure. This approach represents a framework for further understanding the contribution of agricultural pesticide use to exposure in the small-scale agricultural production landscape of many developing countries, and could be useful to evaluate public health intervention strategies to reduce risks to farm-workers and their families. Further research is needed to fully develop an operational version of the model.
Tài liệu tham khảo
Palis FG, Flor RJ, Warburton H, Hossain M: Our farmers at risk: behaviour and belief system in pesticide safety. J Public Health (Oxf). 2006, 28 (1): 43-48.
London L, Bailie R: Challenges for improving surveillance for pesticide poisoning: policy implications for developing countries. Int J Epidemiol. 2001, 30: 564-570.
The World Bank: World Development Report 2008: Agriculture for Development. 2007, Washington D.C.:The World Bank
Litchfield MH: Estimates of acute pesticide poisoning in agricultural workers in less developed countries. Toxicol Rev. 2005, 24: 271-278.
Wesseling C, McConnell R, Partanen T, Hogstedt C: Agricultural pesticide use in developing countries: Health effects and research needs. Int J Health Serv. 1997, 27: 273-308.
Ballantyne B, Salem H: Occupational toxicology and occupational hygiene aspects of Organophosphate and Carbamate Anticholinesterases with particular reference to pesticides. Toxicology of Organophosphate & Carbamate Compounds. Edited by: Gupta RC. 2006, Academic Press, 567-595.
Moffett DB: Public health impacts of organophosphates and carbamates. Toxicology of Organophosphate & Carbamate Compounds. Edited by: Gupta RC. 2006, Academic Press, 599-606.
National Research Council: Human Exposure Assessment for Airborne Pollutants. Advances and Opportunities. 1991, Washington, DC:National Academy Press
Berglund M, Elinder CG, Jarup L: Human Exposure Assessment. An Introduction. 2002, World Health Organization, Geneva and Institute of Environmental Medicine, Karolinska Institutet, Stockholm
Elliott P, Wartenberg D: Spatial Epidemiology: Current approaches and future challenges. Environ Health Perspect. 2004, 112 (9): 998-1006.
Weis BK, Balshaw D, Barr JR, Brown D, Ellisman M, Lioy P, Omenn G, Potter JD, Smith MT, Sohn L, Suk WA, Sumner S, Swenberg J, Walt DR, Watkins S, Thompson C, Wilson SH: Personalized exposure assessment: promising approaches for human environmental health research. Environ Health Perspect. 2005, 113 (7): 840-848.
Jarup L: Health and environment information systems for exposure and disease mapping, and risk assessment. Environ Health Perspect. 2004, 112 (9): 995-997.
Kaminska IA, Oldak A, Turski WA: Geographical information system (GIS) as a tool for monitoring and analysing pesticide pollution and its impact on public health. Ann Agric Environ Med. 2004, 11 (2): 181-184.
Meyer KJ, Reif JS, Rao Veeramachaneni DN, Luben TJ, Mosley BS, Nuckols JR: Agricultural pesticide use and Hypospadias in Eastern Arkansas. Environ Health Perspect. 2006, 114 (10): 1589-1595.
Ward MH, Nuckols JR, Weigel SJ, Maxwell SK, Cantor KP, Miller RS: Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system. Environ Health Perspect. 2000, 108: 5-12.
Nuckols JR, Gunier RB, Riggs P, Miller R, Reynolds P, Ward MH: Linkage of the California pesticide use reporting database with spatial land use data for exposure assessment. Environ Health Perspect. 2007, 115 (5): 684-689.
Bellander T, Jonson T, Gustavsson P, Pershagen G, Jarup L: Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in Stockholm. Environ Health Perspect. 2001, 109: 633-639.
Nyberg F, Gustavsson P, Jarup L, Bellander T, Berglind N, Jakobsson R, Pershagen G: Urban air pollution and lung cancer in Stockholm. Epidemiology. 2000, 11: 487-495.
Reif JS, Burch JB, Nuckols JR, Metzger L, Anger WK: Neurobehavioral effects of exposure to trichloroethylene through a municipal water supply. Environ Res. 2003, 9 (3): 248-258.
Elliott P, Briggs D, Morris S, de Hoogh C, Hurt C, Kold Jensen T, Maitland I, Richardson S, Wakefield J, Jarup L: Risk of adverse birth outcomes in populations living near landfill sites. BMJ. 2001, 323: 363-368.
Rull RP, Ritz B: Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 2003, 111 (13): 1582-1589.
Ares J: Estimating pesticide environmental risk scores with land use data and fugacity equilibrium models in Misiones, Argentina. Agric Ecosyst Environ. 2004, 103: 45-58.
Xu X, Wu P, Thorbek P, Hyder K: Variability in initial spray deposit in apple trees in space and time. Pest Manag Sci. 2006, 62 (10): 947-956.
Nuckols JR, Ward MH, Jarup L: Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect. 2004, 112 (9): 1007-1015.
AvRuskin GA, Jacquez GM, Meliker JR, Slotnick MJ, Kaufmann AM, Nriagu JO: Visualization and exploratory analysis of epidemiologic data using a novel space time information system. Int J Health Geogr. 2004, 3: 26-
Meliker JR, Slotnick MJ, AvRuskin GA, Kaufmann A, Jacquez GM, Nriagu JO: Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools. J Geogr Syst. 2005, 7: 49-66.
Phillips ML, Hall TA, Esmen NA, Lynch R, Johnson DL: Use of global positioning system technology to track subject's location during environmental exposure sampling. J Expo Anal Environ Epidemiol. 2001, 11 (3): 207-215.
Elgethun K, Fenske RA, Yost MG, Palcisko GJ: Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument. Environ Health Perspect. 2003, 111 (1): 115-122.
Mather FJ, White LE, Cullen Langlois E, Shorter CF, Swalm CM, Shaffer JG, Hartley WR: Statistical methods for linking health, exposure, and hazards. Environ Health Perspect. 2004, 112 (14): 1440-1445.
Gaffney SH, Curriero FC, Strickland PT, Glass GE, Helzlsouer KJ, Breysse PN: Influence of geographic location in modeling blood pesticide levels in a community surrounding a US Environmental Protection Agency Superfund site. Environ Health Perspect. 2005, 113 (12): 1712-1716.
Bian L: A conceptual framework for an individual-based spatially explicit epidemiological model. Environ Plann B. 2004, 31: 381-395.
Auchincloss AH, Diez Roux AV: A New Tool for Epidemiology: The usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol. 2008, 168: 1-8.
Garcia-Barrios L, Mayer-Foulkes D, Franco M, Urquijo-Vasquez G, Franco-Perez J: Development and validation of a spatially explicit individual-based mixed crop growth model. Bull Math Biol. 2001, 63 (3): 507-526.
Mazel C, Lafarge M, Hill DR: An individual-based, stochastic and spatial model to simulate the ramification of grass tillers and their distribution in swards. Model Pract Th. 2005, 13: 308-334.
Anwar SM, Jeanneret CA, Parrott L, Marceau DJ: Conceptualization and implementation of a multi-agent model to simulate whale-watching tours in the St. Lawrence Estuary in Quebec, Canada. Environ Modell Softw. 2007, 22 (12): 1775-1787.
Bisignanesi V, Borgas MS: Models for integrated pest management with chemicals in atmospheric surface layers. MODSIM 2005: International Congress on Modelling and Simulation. Edited by: Zerger A, Argent RM. 2005, Modelling and Simulation Society of Australia and New Zealand, 247-253.
Topping CJ, Hansen TS, Jensen TS, Jepsen JU, Nikolajsen F, Odderskaer P: ALMaSS, an agent-based model for animals in temperate European landscapes. Ecol Model. 2003, 167: 65-82.
Bousquet F, Le Page C: Multi-agent simulations and ecosystem management: a review. Ecol Model. 2004, 176: 313-332.
Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science. 2005, 310: 987-991.
Torrens PM, Benenson I: Geographic Automata Systems. Int J Geogr Inf Sci. 2005, 19 (4): 385-412.
Itami RM: Simulating spatial dynamics: cellular automata theory. Landscape Urban Plan. 1994, 30: 27-47.
Tobler WR: Cellular geography. Philosophy in Geography. Edited by: Gale S, Olsson G, Reidel D. 1979, Dordrecht: Kluwer, 379-386.
Wolfram S: Cellular automata as models of complexity. Nature. 1984, 31 (4): 419-424.
Schoell R, Binder C: System Perspectives of Experts and Farmers Regarding the Role of Livelihood Assets in Risk Perception: Results from the Structured Mental Model Approach. Risk Anal. 2008, 29 (2): 205-222.
Cole DC, Carpio F, Julian J, Leon N: Health impacts of pesticide use in Carchi farm population. Economic, Environmental and Health Tradeoffs in Agriculture: Pesticides and the Sustainability of Andean Potato Production. Edited by: Crissman CC, Antle JM, Capalbo SM. 1998, Lima, Peru: International Potato Center and Dordrecht/Boston:Kluwer, 209-213.
North MJ, Collier NT, Vos JR: Experiences creating three implementations of the Repast agent modeling toolkit. ACM T Model Comput Sim. 2006, 16 (1): 1-25.
Riley WJ, McKone TE, Hubal EAC: Estimating contaminant dose for intermittent dermal contact: Model development, testing, and application. Risk Anal. 2004, 24 (1): 73-85.
Riggs P: Assessing multiple geospatial modeling techniques of assigning pesticide exposure in the California central valley. PhD thesis. 2007, Fort Collins, CO:Colorado State University
Ward MH, Lubin J, Giglierano J, Colt JS, Wolter C, Bekiroglu N, Camann D, Hartge P, Nuckols JR: Proximity to crops and residential exposure to agricultural pesticides in Iowa. Environ Health Perspect. 2006, 114: 893-897.
Curwin BD, Hein MJ, Sanderson WT, Nishioka MG, Reynolds SJ, Ward EM, Alavanja MC: Pesticide contamination inside farm and nonfarm homes. J Occup Environ Hyg. 2005, 2 (7): 357-367.
Harnly M, McLaughlin R, Bradman A, Anderson M, Gunier R: Correlating agricultural use of organophosphates with outdoor air concentrations: A particular concern for children. Environ Health Perspect. 2005, 113 (9): 1184-1189.
Antle JM, Cole DC, Crissman CC: Further evidence on pesticides, productivity and farmer health: Potato production in Ecuador. Agric Econ. 1998, 18: 199-207.
Stewart PA, Prince JK, Colt JS, Ward MH: A method for assessing occupational pesticide exposures of farmworkers. Am J Ind Med. 2001, 40: 561-570.
Janssen MA, Ostrom E: Empirically based, agent-based models. Ecol Soc. 2006, 11 (2): 37-
Wood D, Astrakianakis G, Lang B, Le N, Bert J: Development of an agricultural job-exposure matrix for British Columbia, Canada. J Occup Environ Med. 2002, 44 (9): 865-873.
Quandt SA, Hernández-Valero MA, Grzywacz JG, Hovey JD, Gonzales M, Arcury TA: Workplace, household, and personal predictors of pesticide exposure for farmworkers. Environ Health Perspect. 2006, 114 (6): 943-952.
Green DG, Sadedin S: Interactions matter-complexity in landscapes and ecosystems. Ecol Complex. 2005, 2: 117-130.
R Development Core Team: R: A language and environment for statistical computing. 2008, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org
Chavez B, Riley J: Determination of factors influencing integrated pest management adoption in coffee berry borer in Colombian farms. Agr Ecosyst Environ. 2001, 87: 159-177.
Hubal EAC, Sheldon LS, Zufall MJ, Burke JM, Thomas KW: The challenge of assessing children's residential exposure to pesticides. J Expo Anal Environ Epidemiol. 2000, 10 (6): 638-649.