Toxicokinetics of silver nanoparticles in the mealworm Tenebrio molitor exposed via soil or food
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716, 10.1109/TAC.1974.1100705
Ardestani, 2013, Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida, Ecotoxicology, 22, 308, 10.1007/s10646-012-1027-8
Ardestani, 2014, Uptake and elimination kinetics of metals in soil invertebrates: a review, Environ. Pollut., 193, 277, 10.1016/j.envpol.2014.06.026
Argasinski, 2012, The toxicokinetics cell demography model to explain metal kinetics in terrestrial invertebrates, Ecotoxicology, 21, 2186, 10.1007/s10646-012-0972-6
Auffan, 2013, Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex, Water Res., 47, 3921, 10.1016/j.watres.2012.11.063
Avramescu, 2017, Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials, Environ. Sci. Pollut. Res., 24, 1553, 10.1007/s11356-016-7932-2
Baalousha, 2016, Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends, Environ. Sci. Nano, 3, 323, 10.1039/C5EN00207A
Baccaro, 2018, Ageing, dissolution and biogenic formation of nanoparticles : how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?, Environ. Sci. Nano, 5, 1107, 10.1039/C7EN01212H
Bednarska, 2016, Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour, Ecotoxicol. Environ. Saf., 133, 82, 10.1016/j.ecoenv.2016.06.033
Blaser, 2008, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ., 390, 396, 10.1016/j.scitotenv.2007.10.010
Burkowska-But, 2014, Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water, J. Environ. Sci., 26, 542, 10.1016/S1001-0742(13)60451-9
Coutris, 2012, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Sci. Total Environ., 420, 327, 10.1016/j.scitotenv.2012.01.027
Croteau, 2011, Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag, Environ. Sci. Technol., 45, 6600, 10.1021/es200880c
Diez-Ortiz, 2015, Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO₃) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils, Environ. Pollut., 203, 191, 10.1016/j.envpol.2015.03.033
Dodd, 2013, Comparison of two in vitro extraction protocols for assessing metals’ bioaccessibility using dust and soil reference materials, Hum. Ecol. Risk. Assess., 19, 1014, 10.1080/10807039.2012.719381
Eriksson, 2020, The yellow mealworm (Tenebrio molitor) genome: a resource for the emerging insects as food and feed industry, J. Insects as Food Feed, 6, 445, 10.3920/JIFF2019.0057
European'’s Committee for Standardisation (CEN). CEN/TC 52, 2019
Fytili, 2008, Utilization of sewage sludge in EU application of old and new methods-a review, Renew. Sust. Energ. Rev., 12, 116, 10.1016/j.rser.2006.05.014
Giese, 2018, Risks, release and concentrations of engineered nanomaterial in the environment, Sci. Rep., 8, 1, 10.1038/s41598-018-19275-4
Greenberg, 1996, Effects of chronic hypoxia, normoxia and hyperoxia on larval development in the beetle Tenebrio molitor, J. Insect Physiol., 42, 991, 10.1016/S0022-1910(96)00071-6
Hug Peter, 2018, Modeling whole body trace metal concentrations in aquatic invertebrate communities: a trait-based approach, Environ. Pollut., 233, 419, 10.1016/j.envpol.2017.10.044
Kampe, 2018, Silver nanoparticles in sewage sludge: Bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber, Environ. Toxicol. Chem., 37, 1606, 10.1002/etc.4102
Kim, 2010, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environ. Sci. Technol., 44, 7509, 10.1021/es101565j
Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405
Lindqvist, 1995, Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae), Comp. Biochem. Physiol., 111, 325
Loureiro, 2018, 161
Makama, 2016, Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut., 218, 870, 10.1016/j.envpol.2016.08.016
McGillicuddy, 2017, Silver nanoparticles in the environment: sources, detection and ecotoxicology, Sci. Total Environ., 575, 231, 10.1016/j.scitotenv.2016.10.041
Morales-Ramos, 2010, Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets, J. Entomol. Sci., 45, 75, 10.18474/0749-8004-45.2.75
Murray, 1968, The importance of water in the normal growth of larvae of Tenebrio molitor, Ent. Exp. Appl., 11, 149, 10.1111/j.1570-7458.1968.tb02041.x
OECD, 2015
Oomen, 2018, Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency, NanoImpact, 9, 1, 10.1016/j.impact.2017.09.001
Paine, 2012, How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists, Methods Ecol. Evol., 3, 245, 10.1111/j.2041-210X.2011.00155.x
Pedersen, 2007, Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera), Comp. Biochem. Physiol. Part C, 145, 457
Petersen, 2019, Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms, Environ. Sci. Nano, 6, 1619, 10.1039/C8EN01378K
Ribeiro, 2014, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci. Total Environ., 466–467, 232, 10.1016/j.scitotenv.2013.06.101
Ribeiro, 2017, Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver, Sci. Total Environ., 574, 1633, 10.1016/j.scitotenv.2016.08.204
Roig, 2012, Long-term amendment of Spanish soils with sewage sludge: effects on soil functioning, Agric. Ecosyst. Environ., 158, 41, 10.1016/j.agee.2012.05.016
Sarwade, 2013, Anatomical and histological structure of digestive tract of adult Platynotus belli. F (Coleoptera: Tenebrionidae), Biol. Forum – An Int. J., 5, 47
Sekine, 2015, Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films, Environ. Sci. Technol., 49, 897, 10.1021/es504229h
Silva, 2020, Toxicokinetics of pristine and aged silver nanoparticles in Physa acuta, Environ. Sci. Nano, 10.1039/D0EN00946F
Sokal, 2012
Sørensen, 2019, Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process, Environ. Sci. Nano, 6, 505, 10.1039/C8EN00933C
Svendsen, 2020, Key principles and operational practices for improved nanotechnology environmental exposure assessment, Nat. Nanotechnol., 15, 731, 10.1038/s41565-020-0742-1
Talaber, 2020, Comparative biokinetics of pristine and sulfidized Ag nanoparticles in two arthropod species exposed to different field soils, Environ. Sci. Nano, 7, 2735, 10.1039/D0EN00291G
Tashiro, 1990, Chapter 40: insecta: coleoptera scarabaeidae larvae, 1191
Thomassen, 2001, Chemical speciation and sequential extraction of Mn in workroom aerosols: analytical methodology and results from a field study in Mn alloy plants, J. Environ. Monit., 3, 555, 10.1039/b104479f
Timmermans, 1989, The fate of trace metals during the metamorphosis of chironomids (diptera, chironomidae), Environ. Pollut., 62, 73, 10.1016/0269-7491(89)90097-3
Topuz, 2015, Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium, Environ. Toxicol. Chem., 34, 2816, 10.1002/etc.3123
Topuz, 2017, The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus, Ecotoxicol. Environ. Saf., 144, 330, 10.1016/j.ecoenv.2017.06.037
Tourinho, 2016, Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food, Ecotoxicology, 25, 267, 10.1007/s10646-015-1585-7
Truzzi, 2019, Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption, Int. J. Environ. Res. Public Health, 16, 4815, 10.3390/ijerph16234815
van den Brink, 2019, Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms, Environ. Sci. Nano, 6, 1985, 10.1039/C8EN01122B
Van Der Zande, 2020, The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology, Environ. Sci. Nano, 00, 1
Velicogna, 2017, The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil, NanoImpact, 6, 11, 10.1016/j.impact.2017.03.001
Vijver, 2003, Metal uptake from soils and soil – sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera), Ecotoxicol. Environ. Saf., 54, 277, 10.1016/S0147-6513(02)00027-1
Vijver, 2006, Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food, Soil Biol. Biochem., 38, 1554, 10.1016/j.soilbio.2005.11.006
Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y
Wang, 2011, Incorporating exposure into aquatic toxicological studies: an imperative, Aquat. Toxicol., 105S, 9, 10.1016/j.aquatox.2011.05.016
Yang, 2015, Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms, Environ. Sci. Technol., 49, 12087, 10.1021/acs.est.5b02663