Toxicokinetics of silver nanoparticles in the mealworm Tenebrio molitor exposed via soil or food

Science of The Total Environment - Tập 777 - Trang 146071 - 2021
Zahra Khodaparast1, Cornelis A.M. van Gestel2, Anastasios G. Papadiamantis3,4, Sandra F. Gonçalves1, Iseult Lynch4, Susana Loureiro1
1Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
2Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, the Netherlands
3NovaMechanics Ltd., 1065 Nicosia, Cyprus
4School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716, 10.1109/TAC.1974.1100705

Ardestani, 2013, Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida, Ecotoxicology, 22, 308, 10.1007/s10646-012-1027-8

Ardestani, 2014, Uptake and elimination kinetics of metals in soil invertebrates: a review, Environ. Pollut., 193, 277, 10.1016/j.envpol.2014.06.026

Argasinski, 2012, The toxicokinetics cell demography model to explain metal kinetics in terrestrial invertebrates, Ecotoxicology, 21, 2186, 10.1007/s10646-012-0972-6

Auffan, 2013, Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex, Water Res., 47, 3921, 10.1016/j.watres.2012.11.063

Avramescu, 2017, Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials, Environ. Sci. Pollut. Res., 24, 1553, 10.1007/s11356-016-7932-2

Baalousha, 2016, Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends, Environ. Sci. Nano, 3, 323, 10.1039/C5EN00207A

Baccaro, 2018, Ageing, dissolution and biogenic formation of nanoparticles : how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?, Environ. Sci. Nano, 5, 1107, 10.1039/C7EN01212H

Bednarska, 2016, Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour, Ecotoxicol. Environ. Saf., 133, 82, 10.1016/j.ecoenv.2016.06.033

Blaser, 2008, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ., 390, 396, 10.1016/j.scitotenv.2007.10.010

Burkowska-But, 2014, Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water, J. Environ. Sci., 26, 542, 10.1016/S1001-0742(13)60451-9

Coutris, 2012, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Sci. Total Environ., 420, 327, 10.1016/j.scitotenv.2012.01.027

Croteau, 2011, Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag, Environ. Sci. Technol., 45, 6600, 10.1021/es200880c

Diez-Ortiz, 2015, Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO₃) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils, Environ. Pollut., 203, 191, 10.1016/j.envpol.2015.03.033

Dodd, 2013, Comparison of two in vitro extraction protocols for assessing metals’ bioaccessibility using dust and soil reference materials, Hum. Ecol. Risk. Assess., 19, 1014, 10.1080/10807039.2012.719381

Eriksson, 2020, The yellow mealworm (Tenebrio molitor) genome: a resource for the emerging insects as food and feed industry, J. Insects as Food Feed, 6, 445, 10.3920/JIFF2019.0057

European'’s Committee for Standardisation (CEN). CEN/TC 52, 2019

Fytili, 2008, Utilization of sewage sludge in EU application of old and new methods-a review, Renew. Sust. Energ. Rev., 12, 116, 10.1016/j.rser.2006.05.014

Giese, 2018, Risks, release and concentrations of engineered nanomaterial in the environment, Sci. Rep., 8, 1, 10.1038/s41598-018-19275-4

Greenberg, 1996, Effects of chronic hypoxia, normoxia and hyperoxia on larval development in the beetle Tenebrio molitor, J. Insect Physiol., 42, 991, 10.1016/S0022-1910(96)00071-6

Hug Peter, 2018, Modeling whole body trace metal concentrations in aquatic invertebrate communities: a trait-based approach, Environ. Pollut., 233, 419, 10.1016/j.envpol.2017.10.044

Kampe, 2018, Silver nanoparticles in sewage sludge: Bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber, Environ. Toxicol. Chem., 37, 1606, 10.1002/etc.4102

Kim, 2010, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environ. Sci. Technol., 44, 7509, 10.1021/es101565j

Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405

Lindqvist, 1995, Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae), Comp. Biochem. Physiol., 111, 325

Loureiro, 2018, 161

Makama, 2016, Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut., 218, 870, 10.1016/j.envpol.2016.08.016

McGillicuddy, 2017, Silver nanoparticles in the environment: sources, detection and ecotoxicology, Sci. Total Environ., 575, 231, 10.1016/j.scitotenv.2016.10.041

Morales-Ramos, 2010, Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets, J. Entomol. Sci., 45, 75, 10.18474/0749-8004-45.2.75

Murray, 1968, The importance of water in the normal growth of larvae of Tenebrio molitor, Ent. Exp. Appl., 11, 149, 10.1111/j.1570-7458.1968.tb02041.x

OECD, 2015

Oomen, 2018, Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency, NanoImpact, 9, 1, 10.1016/j.impact.2017.09.001

Paine, 2012, How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists, Methods Ecol. Evol., 3, 245, 10.1111/j.2041-210X.2011.00155.x

Pedersen, 2007, Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera), Comp. Biochem. Physiol. Part C, 145, 457

Petersen, 2019, Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms, Environ. Sci. Nano, 6, 1619, 10.1039/C8EN01378K

Ribeiro, 2014, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci. Total Environ., 466–467, 232, 10.1016/j.scitotenv.2013.06.101

Ribeiro, 2017, Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver, Sci. Total Environ., 574, 1633, 10.1016/j.scitotenv.2016.08.204

Roig, 2012, Long-term amendment of Spanish soils with sewage sludge: effects on soil functioning, Agric. Ecosyst. Environ., 158, 41, 10.1016/j.agee.2012.05.016

Sarwade, 2013, Anatomical and histological structure of digestive tract of adult Platynotus belli. F (Coleoptera: Tenebrionidae), Biol. Forum – An Int. J., 5, 47

Sekine, 2015, Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films, Environ. Sci. Technol., 49, 897, 10.1021/es504229h

Silva, 2020, Toxicokinetics of pristine and aged silver nanoparticles in Physa acuta, Environ. Sci. Nano, 10.1039/D0EN00946F

Sokal, 2012

Sørensen, 2019, Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process, Environ. Sci. Nano, 6, 505, 10.1039/C8EN00933C

Svendsen, 2020, Key principles and operational practices for improved nanotechnology environmental exposure assessment, Nat. Nanotechnol., 15, 731, 10.1038/s41565-020-0742-1

Talaber, 2020, Comparative biokinetics of pristine and sulfidized Ag nanoparticles in two arthropod species exposed to different field soils, Environ. Sci. Nano, 7, 2735, 10.1039/D0EN00291G

Tashiro, 1990, Chapter 40: insecta: coleoptera scarabaeidae larvae, 1191

Thomassen, 2001, Chemical speciation and sequential extraction of Mn in workroom aerosols: analytical methodology and results from a field study in Mn alloy plants, J. Environ. Monit., 3, 555, 10.1039/b104479f

Timmermans, 1989, The fate of trace metals during the metamorphosis of chironomids (diptera, chironomidae), Environ. Pollut., 62, 73, 10.1016/0269-7491(89)90097-3

Topuz, 2015, Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium, Environ. Toxicol. Chem., 34, 2816, 10.1002/etc.3123

Topuz, 2017, The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus, Ecotoxicol. Environ. Saf., 144, 330, 10.1016/j.ecoenv.2017.06.037

Tourinho, 2016, Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food, Ecotoxicology, 25, 267, 10.1007/s10646-015-1585-7

Truzzi, 2019, Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption, Int. J. Environ. Res. Public Health, 16, 4815, 10.3390/ijerph16234815

van den Brink, 2019, Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms, Environ. Sci. Nano, 6, 1985, 10.1039/C8EN01122B

Van Der Zande, 2020, The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology, Environ. Sci. Nano, 00, 1

Velicogna, 2017, The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil, NanoImpact, 6, 11, 10.1016/j.impact.2017.03.001

Vijver, 2003, Metal uptake from soils and soil – sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera), Ecotoxicol. Environ. Saf., 54, 277, 10.1016/S0147-6513(02)00027-1

Vijver, 2006, Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food, Soil Biol. Biochem., 38, 1554, 10.1016/j.soilbio.2005.11.006

Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y

Wang, 2011, Incorporating exposure into aquatic toxicological studies: an imperative, Aquat. Toxicol., 105S, 9, 10.1016/j.aquatox.2011.05.016

Yang, 2015, Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms, Environ. Sci. Technol., 49, 12087, 10.1021/acs.est.5b02663

Yao, 1993, Theory and simulation of Ostwald ripening, Phys. Rev. B, 47, 14110, 10.1103/PhysRevB.47.14110