Local fractal dimension based approaches for colonic polyp classification
Tài liệu tham khảo
Andrė, 2012, Learning semantic and visual similarity for endomicroscopy video retrieval, IEEE Trans. Med. Imag., 31, 1276, 10.1109/TMI.2012.2188301
Andrė, 2011, A smart atlas for endomicroscopy using automated video retrieval, Med. Image Anal., 15, 460, 10.1016/j.media.2011.02.003
Chaudhuri, 1995, Texture segmentation using fractal dimension, IEEE Trans. Pattern Anal. Mach. Intell., 17, 72, 10.1109/34.368149
Eystratios, 2012, Fuzzy binary patterns for uncertainty-aware texture representation, Electr. Lett. Comp. Vis. Image Anal., 10, 63
Fay, 2010, Wilcoxon-mann-whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules, Stat. Surv., 4, 1, 10.1214/09-SS051
Geusebroek, 2003, Fast anisotropic gauss filtering, IEEE Trans. Image Process., 12, 938, 10.1109/TIP.2003.812429
Gono, 2003, Endoscopic observation of tissue by narrowband illumination, Opt. Rev., 10, 211, 10.1007/s10043-003-0211-8
Gross, 2012, Automated classification of colon polyps in endoscopic image data, Proc. SPIE, 8315, 10.1117/12.911177
Häfner, 2014, A novel shape feature descriptor for the classification of polyps in HD colonoscopy, 205
Häfner, 2009, Feature-extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images, Pattern Anal. Appl., 12, 407, 10.1007/s10044-008-0136-8
Häfner, 2012, Color treatment in endoscopic image classification using multi-scale local color vector patterns, Med. Image Anal., 16, 75, 10.1016/j.media.2011.05.006
Häfner, 2014, Bridging the resolution gap between endoscope types for a colonic polyp classification, 2734
Häfner, 2014, Shape and size adapted local fractal dimension for the classification of polyps in hd colonoscopy, 2299
Iakovidis, 2015, Software for enhanced video capsule endoscopy: Challenges for essential progress, Nat. Rev. Gastroenterol. Hepatol., 12, 172, 10.1038/nrgastro.2015.13
Iakovidis, 2006, An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy, Comp. Biol. Med., 36, 1084, 10.1016/j.compbiomed.2005.09.008
Iakovidis, 2005, A comparative study of texture features for the discrimination of gastric polyps in endoscopic video, 575
Jabbour, 2012, Confocal endomicroscopy: Instrumentation and medical applications, Annal. Biomed. Eng., 40, 378, 10.1007/s10439-011-0426-y
Kanao, 2008, Clinical significance of type vi pit pattern subclassification in determining the depth of invasion of colorectal neoplasms, World J. Gastroenterol., 14, 211, 10.3748/wjg.14.211
Karkanis, 2003, Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE Trans. Inform. Technol. Biomed., 7, 141, 10.1109/TITB.2003.813794
Kato, 2006, Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions, World J. Gastroenterol., 12, 1416, 10.3748/wjg.v12.i9.1416
Kiesslich, 2009, Advanced imaging in endoscopy, Eur. Gastroenterol. Hepatol. Rev., 5, 22
Kodashima, 2010, Novel image-enhanced endoscopy with i-scan technology, World J. Gastroenterol., 16, 1043, 10.3748/wjg.v16.i9.1043
Kovesi, 1999, Image features from phase congruency, Videre: J. Comp. Vis. Res., 1, 2
Kovesi, P.D., 2000. MATLAB and Octave Functions for Computer Vision and Image Processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia. Accessed from: <http://www.csse.uwa.edu.au/~pk/research/matlabfns/> .
Kudo, 1994, Colorectal tumours and pit pattern, J. Clin. Pathol., 47, 880, 10.1136/jcp.47.10.880
Lazebnik, 2005, A sparse texture representation using local affine region, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1265, 10.1109/TPAMI.2005.151
Liao, 2007, Learning multi-scale block local binary patterns for face recognition, Advances in Biometrics, Lecture Notes in Computer Science 4642, 2007, 828
Lopes, 2009, Fractal and multifractal analysis: A review, Med. Image Anal., 13, 634, 10.1016/j.media.2009.05.003
Maroulis, 2003, Cold: A versatile detection system for colorectal lesions in endoscopy video-frames, Comp. Method. Program. Biomed., 70, 151, 10.1016/S0169-2607(02)00007-X
McNemar, 1947, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, 12, 153, 10.1007/BF02295996
Roerdink, 2000, The watershed transform: Definitions, algorithms and parallelization strategies, Fundam. Inform., 41, 187, 10.3233/FI-2000-411207
Romain, 2013, Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer, 1
Tamaki, 2013, Computer-aided colorectal tumor classification in NBI endoscopy using local features, Med. Image Anal., 17, 78, 10.1016/j.media.2012.08.003
Tan, 2010, Enhanced local texture feature sets for face recognition under difficult lighting conditions, IEEE Trans. Image Process., 19, 1635, 10.1109/TIP.2010.2042645
Uhl, 2011, Fractal analysis for the viewpoint invariant classification of celiac disease, 727
Varma, 2007, Locally invariant fractal features for statistical texture classification, 1
Varma, 2005, A statistical approach to texture classification from single images, Int. J. Comp. Vis., 62, 61, 10.1007/s11263-005-4635-4
Vedaldi, A., Fulkerson, B., 2008. VLFeat: An open and portable library of computer vision algorithms. Accessed from: http://www.vlfeat.org/.
Vincent, 1991, Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Trans. Pattern Anal. Mach. Intell., 13, 583, 10.1109/34.87344
Xia, 2006, Morphology-based multifractal estimation for texture segmentation, IEEE Trans. Image Process., 15, 614, 10.1109/TIP.2005.863029
Xu, 2009, Viewpoint invariant texture description using fractal analysis, Int. J. Comp. Vis., 83, 85, 10.1007/s11263-009-0220-6
Yuce, 2012, Easy-to-swallow wireless telemetry, IEEE Microw. Mag., 13, 90, 10.1109/MMM.2012.2205833