Local fractal dimension based approaches for colonic polyp classification

Medical Image Analysis - Tập 26 - Trang 92-107 - 2015
Michael Häfner1, Toru Tamaki2, Shinji Tanaka3, Andreas Uhl4, Georg Wimmer4, Shigeto Yoshida3
1St. Elisabeth Hospital, Landstraßer Hauptstraße 4a, Vienna A-1030, Austria
2Department of Information Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan
3Department of Endoscopy, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
4Department of Computer Sciences, Jakob Haringerstrasse 2, University of Salzburg, Salzburg 5020, Austria

Tài liệu tham khảo

Andrė, 2012, Learning semantic and visual similarity for endomicroscopy video retrieval, IEEE Trans. Med. Imag., 31, 1276, 10.1109/TMI.2012.2188301 Andrė, 2011, A smart atlas for endomicroscopy using automated video retrieval, Med. Image Anal., 15, 460, 10.1016/j.media.2011.02.003 Chaudhuri, 1995, Texture segmentation using fractal dimension, IEEE Trans. Pattern Anal. Mach. Intell., 17, 72, 10.1109/34.368149 Eystratios, 2012, Fuzzy binary patterns for uncertainty-aware texture representation, Electr. Lett. Comp. Vis. Image Anal., 10, 63 Fay, 2010, Wilcoxon-mann-whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules, Stat. Surv., 4, 1, 10.1214/09-SS051 Geusebroek, 2003, Fast anisotropic gauss filtering, IEEE Trans. Image Process., 12, 938, 10.1109/TIP.2003.812429 Gono, 2003, Endoscopic observation of tissue by narrowband illumination, Opt. Rev., 10, 211, 10.1007/s10043-003-0211-8 Gross, 2012, Automated classification of colon polyps in endoscopic image data, Proc. SPIE, 8315, 10.1117/12.911177 Häfner, 2014, A novel shape feature descriptor for the classification of polyps in HD colonoscopy, 205 Häfner, 2009, Feature-extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images, Pattern Anal. Appl., 12, 407, 10.1007/s10044-008-0136-8 Häfner, 2012, Color treatment in endoscopic image classification using multi-scale local color vector patterns, Med. Image Anal., 16, 75, 10.1016/j.media.2011.05.006 Häfner, 2014, Bridging the resolution gap between endoscope types for a colonic polyp classification, 2734 Häfner, 2014, Shape and size adapted local fractal dimension for the classification of polyps in hd colonoscopy, 2299 Iakovidis, 2015, Software for enhanced video capsule endoscopy: Challenges for essential progress, Nat. Rev. Gastroenterol. Hepatol., 12, 172, 10.1038/nrgastro.2015.13 Iakovidis, 2006, An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy, Comp. Biol. Med., 36, 1084, 10.1016/j.compbiomed.2005.09.008 Iakovidis, 2005, A comparative study of texture features for the discrimination of gastric polyps in endoscopic video, 575 Jabbour, 2012, Confocal endomicroscopy: Instrumentation and medical applications, Annal. Biomed. Eng., 40, 378, 10.1007/s10439-011-0426-y Kanao, 2008, Clinical significance of type vi pit pattern subclassification in determining the depth of invasion of colorectal neoplasms, World J. Gastroenterol., 14, 211, 10.3748/wjg.14.211 Karkanis, 2003, Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE Trans. Inform. Technol. Biomed., 7, 141, 10.1109/TITB.2003.813794 Kato, 2006, Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions, World J. Gastroenterol., 12, 1416, 10.3748/wjg.v12.i9.1416 Kiesslich, 2009, Advanced imaging in endoscopy, Eur. Gastroenterol. Hepatol. Rev., 5, 22 Kodashima, 2010, Novel image-enhanced endoscopy with i-scan technology, World J. Gastroenterol., 16, 1043, 10.3748/wjg.v16.i9.1043 Kovesi, 1999, Image features from phase congruency, Videre: J. Comp. Vis. Res., 1, 2 Kovesi, P.D., 2000. MATLAB and Octave Functions for Computer Vision and Image Processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia. Accessed from: <http://www.csse.uwa.edu.au/~pk/research/matlabfns/> . Kudo, 1994, Colorectal tumours and pit pattern, J. Clin. Pathol., 47, 880, 10.1136/jcp.47.10.880 Lazebnik, 2005, A sparse texture representation using local affine region, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1265, 10.1109/TPAMI.2005.151 Liao, 2007, Learning multi-scale block local binary patterns for face recognition, Advances in Biometrics, Lecture Notes in Computer Science 4642, 2007, 828 Lopes, 2009, Fractal and multifractal analysis: A review, Med. Image Anal., 13, 634, 10.1016/j.media.2009.05.003 Maroulis, 2003, Cold: A versatile detection system for colorectal lesions in endoscopy video-frames, Comp. Method. Program. Biomed., 70, 151, 10.1016/S0169-2607(02)00007-X McNemar, 1947, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, 12, 153, 10.1007/BF02295996 Roerdink, 2000, The watershed transform: Definitions, algorithms and parallelization strategies, Fundam. Inform., 41, 187, 10.3233/FI-2000-411207 Romain, 2013, Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer, 1 Tamaki, 2013, Computer-aided colorectal tumor classification in NBI endoscopy using local features, Med. Image Anal., 17, 78, 10.1016/j.media.2012.08.003 Tan, 2010, Enhanced local texture feature sets for face recognition under difficult lighting conditions, IEEE Trans. Image Process., 19, 1635, 10.1109/TIP.2010.2042645 Uhl, 2011, Fractal analysis for the viewpoint invariant classification of celiac disease, 727 Varma, 2007, Locally invariant fractal features for statistical texture classification, 1 Varma, 2005, A statistical approach to texture classification from single images, Int. J. Comp. Vis., 62, 61, 10.1007/s11263-005-4635-4 Vedaldi, A., Fulkerson, B., 2008. VLFeat: An open and portable library of computer vision algorithms. Accessed from: http://www.vlfeat.org/. Vincent, 1991, Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Trans. Pattern Anal. Mach. Intell., 13, 583, 10.1109/34.87344 Xia, 2006, Morphology-based multifractal estimation for texture segmentation, IEEE Trans. Image Process., 15, 614, 10.1109/TIP.2005.863029 Xu, 2009, Viewpoint invariant texture description using fractal analysis, Int. J. Comp. Vis., 83, 85, 10.1007/s11263-009-0220-6 Yuce, 2012, Easy-to-swallow wireless telemetry, IEEE Microw. Mag., 13, 90, 10.1109/MMM.2012.2205833