Interneurons in the suboesophageal ganglion of the locust associated with flight initiation

Zeitschrift für vergleichende Physiologie - Tập 162 - Trang 669-685 - 1988
Jan-Marino Ramirez1,2
1Fachbereich für Biologie, Universität Regensburg, Regensburg, Federal Republic of Germany
2Department of Physiology, University of Alberta, Edmonton, Canada

Tóm tắt


Tài liệu tham khảo

Altman JS, Kien J (1979) Suboesophageal neurons involved in head movements and feeding in locusts. Proc R Soc Lond B 205:209–227 Arbas EA (1986) Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J Comp Physiol A 159:849–857 Bicker G, Pearson KG (1985) Initiation of flight by stimulation of a single identified wind sensitive neuron (TCG) in the locust. J Exp Biol 104:289–294 Boyan GS (1985) Auditory input to the flight system of the locust. J Comp Physiol A 156:79–91 Boyan GS, Altman JS (1985) The suboesophageal ganglion a ‘missing link’ in the auditory pathway of the locust. J Comp Physiol A 156:413–428 Boyan GS, Ashman S, Ball EE (1986) Initiation and modulation of flight by a single giant interneuron in the cercal system of the locust. Naturwissenschaften 73:272–274 Brady J (1967) Histological observations on circadian changes in the neurosecretory cells of cockroach suboesophageal ganglion. J Insect Physiol 13:201–213 Brodfuehrer PD, Friesen WO (1986a) Initiation of swimming activity by trigger neurons in the leech suboesophageal ganglion. I. Output connections of Tr1 and Tr2. J Comp Physiol A 159:489–502 Brodfuehrer PD, Friesen WO (1986b) Initiation of swimming activity by trigger neurons in the leech suboesophageal ganglion. II. Role of segmental swim-initiating interneurons. J Comp Physiol A 159:503–510 Brodfuehrer PD, Friesen WO (1986c) Initiation of swimming activity by trigger neurons in the leech suboesophageal ganglion. III. Sensory inputs to Tr1 and Tr2. J Comp Physiol A 159:511–519 Brodfuehrer PD, Friesen WO (1986d) Control of leech swimming activity by the cephalic ganglia. J Neurobiol 17:697–705 Burrows M (1985) Nonspiking and spiking local interneurons in the locust. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York London Camhi JM (1969) Locust wind receptors: III. Contribution to flight initiation and lift control. J Exp Biol 50:363–374 Camhi JM, Hinkle M (1972) Attentiveness to sensory stimuli: Central control in locusts. Science 175:550–553 Davis WJ (1976) Organizational concepts in the central motor networks of invertebrates. Adv Behav Biol 18:265–292 Davis WJ, Kennedy D (1972) Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motoneurons. J Neurophysiol 35:1–12 Eaton RC, Lavender WA, Wieland CM (1982) Alternative neural pathways initiate fast-start responses following lesions of the Mauthner neuron in goldfish. J Comp Physiol 145:485–496 Gewecke M, Philippen J (1978) Control of the horizontal flight course by air current sense organs inLocusta migratoria. Physiol Entomol 3:43–52 Gillette R, Kovac MP, Davis WJ (1982) Control of feeding motor output by paracerebral neurons in brain ofPleurobranchaea californica. J Neurophysiol 47:885–908 Granzow B, Kater SB (1977) Identified higher order neurons controlling the feeding motor programm ofHelisoma. Neuroscience 2:1049–1063 Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. I. Anatomy and physiology of descending cephalothoracic interneurons. J Comp Physiol A 158:413–427 Hedwig B, Pearson KG (1984) Patterns of synaptic input to identified flight motoneurons in the locust. J Comp Physiol A 154:745–760 Horsmann U, Heinzel HG, Wendler G (1983) The phasic influence of self-generated air currents on the locust flight motor. J Comp Physiol 150:427–438 Huber F (1960) Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae). Z Vergl Physiol 43:359–391 Kalmring K (1975) The afferent auditory pathway in the ventral cord ofLocusta migratoria (Acrididae). I. Synaptic connectivity and information processing among the auditory neurons of the ventral cord. J Comp Physiol 104:103–141 Kien J (1983) The initiation and maintenance of walking in the locust: an alternative to the command concept. Proc R Soc Lond B 219:137–174 Kien J, Altman JS (1984) Descending interneurons from the brain and suboesophageal ganglion and their role in the control of locust behaviour. J Insect Physiol 30:54–72 Kien J, Fletcher WA, Altman JS, Ramirez JM, Roth U (in press) The anatomical organization of intersegmental interneurons in the locust suboesophageal ganglion. Proc R Soc Lond B Kovac MP, Davis WS, Matera EM, Croll RP (1983) Organization of synaptic inputs to paracerebral feeding command interneurons ofPleurobranchaea californica. I. Excitatory inputs. J Neurophysiol 49:1517–1538 Krämer K, Markl H (1978) Flight-inhibition on ground contact in the American cockroachPeriplaneta americana. I. Contact receptors and a model for their central connections. J Insect Physiol 24:577–586 Krogh A, Weis-Fogh (1951) The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J Exp Biol 28:344–357 Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39 Lennard PR, Getting PA, Hume RI (1980) Central pattern generator mediating swimming inTritonia. II. Initiation, maintenance and termination. J Neurophysiol 44: 165–173 Marquart V (1985) Auditorische Interneurone im thorakalen Nervensystem von Heuschrecken: Morphologie, Physiologie und synaptische Verbindungen. PhD thesis, University of Bochum, FRG Mayer RJ, Candy DJ (1969) Control of haemolymph lipid concentration during locust flight: an adipokinetic hormone from the corpora cardiaca. J Insect Physiol 15:611–620 McClellan AD (1983) Higher order neurons in the cerebral ganglia ofPleurobranchaea have diverse effects on buccal motor patterns. J Comp Physiol 153:533–541 Möhl B (1985) Sensory aspects of flight pattern generation in the locust. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin Hamburg, pp 139–148 Moore D, Larimer JL (1987) Neural control of a cyclic postural behaviour in the crayfish,Procambarus clarkii: the patterninitiating interneurons. J Comp Physiol A 160:169–179 Nusbaum MP, Kristan WB Jr (1986) Swim initiation in the leech by serotonin-containing interneurons, cells 21 and 61. J Exp Biol 122:277–302 Olson GC, Krasne FB (1981) The crayfish lateral giants as command neurons for escape behavior. Brain Res 214:89–100 Orchard I, Lange AB (1983) The hormonal control of haemolymph lipid during flight inLocusta migratoria. J Insect Physiol 29:639–642 Otto D, Weber T (1982) Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J Comp Physiol 148:209–219 Pearson KG, Wolf H (1987) Comparison of motor patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis. J Comp Physiol A 160:259–268 Pearson KG, Reye DN, Robertson RM (1983) Phase-dependent influences of wing stretch receptor on flight rhythm in the locust. J Neurophysiol 49:1168–1181 Pearson KG, Boyan GS, Bastiani M, Goodman CS (1985a) Heterogeneous properties of segmentally homologous interneurons in the ventral nervous cord of locusts. J Comp Neurol 233:133–145 Pearson KG, Reye DN, Parsons DW, Bicker G (1985b) Flight initiating interneurons in the locust. J Neurophysiol 53:910–934 Pearson KG, Gynther IC, Heitier WJ (1986) Coupling of flight initiation to the jump in locusts. J Comp Physiol A 158:81–89 Pfau HK, Nachtigall W (1981) Der Vorderflügel grosser Heuschrecken als Luftkrafterzeuger. II. Zusammenspiel von Muskeln und Gelenkmechanik bei der Einstellung der Flügelgeometrie. J Comp Physiol 142:135–140 Pond CM (1972) Neuromuscular activity and wing movements at the start of flight ofPeriplaneta americana andSchistocerca gregaria. J Comp Physiol 78:192–209 Ramirez JM (1986) Interneuronal control of locust flight. PhD thesis, University of Regensburg, FRG Reichert H, Rowell CHF (1985) Integration of non-phase locked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53:1201–1218 Ritzmann RE, Pollack AJ (1986) Identification of thoracic interneurons that mediate giant interneuron-to-motor pathways in the cockroach. J Comp Physiol A 159:639–654 Ritzmann RE, Tobias ML, Fourtner CR (1980) Flight activity initiated via giant interneurons of the cockroach: evidence for bifunctional trigger interneurons. Science 210:443–445 Ritzmann RE, Pollack AJ, Tobias ML (1983) Flight activity mediated by intracellular stimulation of dorsal giant interneurons of the cockroachPeriplaneta americana. J Comp Physiol 147:313–322 Robertson RM, Pearson KG (1982) A preparation for the intracellular analysis of neuronal activity during flight in the locust. J Comp Physiol 146:311–320 Robertson RM, Pearson KG (1983) Interneurons in the flight system of the locust: distribution, connections and resetting properties. J Comp Neurol 215:33–50 Robertson RM, Pearson KG (1984) Interneuronal organization in the flight system of the locust. J Insect Physiol 30:95–101 Robertson RM, Pearson KG (1985) Neural circuits in the flight system of the locust. J Neurophysiol 53:110–128 Rock MK, Hackett JT, Brown DL (1981) Does the Mauthner cell conform to the criteria of the command neuron concept? Brain Res 204:21–27 Ronacher B, Helversen D von, Helversen O von (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374 Rowell CHF (1964) Central control of an insect segmental reflex. I. Inhibition by different parts of the central nervous system. J Exp Biol 41:559–572 Rowell CHF, Reichert H (1986) Three descending interneurons reporting deviation from course in the locust. II. Physiology. J Comp Physiol A 158:775–794 Siegler MVS (1981) Postural changes alter synaptic interactions between non-spiking interneurons and motoneurons of the locust. J Neurophysiol 46:310–323 VanMarrewijk WJA, VanDenBroek ATM, Beenakkers AMT (1980) Regulation of glycogenolysis in the locust body during flight. Insect Biochem 10:675–679 Weeks JC (1982a) Synaptic basis of swim initiation in the leech. I. Connections of a swim initiating neuron (cell 204) with motor neurons and pattern-generating ‘oscillator’ neurons. J Comp Physiol 148:253–263 Weeks JC (1982b) Synaptic basis of swim initiation in the leech. II. A pattern generating neuron (cell 208) which mediates motor effects of swim initiating neuron. J Comp Physiol 148:265–279 Wendler G (1974) The influence of proprioceptive feedback on locust flight coordination. J Comp Physiol 88:173–200 Wendler G (1983) The locust flight system: Functional aspects of sensory input and methods of investigation. In: Nachtigall W (ed) BIONA-report 2. Akad Wiss Mainz, Fischer, Stuttgart New York, pp 113–125 Willows AOD (1981) Physiological basis of feeding behavior inTritonia diomedea. II. Neuronal mechanisms. J Neurophysiol 44:489–861 Wilson DM (1961) The central nervous control of flight in a locust. J Exp Biol 38:471–490 Wine JJ (1984) The structural basis of an innate behavioural pattern. J Exp Biol 112:283–319 Wolf H, Pearson KG (1987) Comparison of motor patterns in the intact and deafferented flight system of the locust. II. Intracellular recordings from flight motoneurons. J Comp Physiol A 160:269–279 Worm RAA, Beenakkers AMT (1980) Regulation of substrate utilization in the flight muscle of the locust,Locusta migratoria, during flight. Insect Biochem 10:53–59 Zarnack W (1982) Untersuchungen zum Flug von Wanderheuschrecken. Die Bewegungen, räumlichen Lagebeziehungen sowie Formen und Profile von Vorder- und Hinterflügeln. In: Nachtigall W (ed): Biona-report 1. Akad Wiss Mainz, Fischer, Stuttgart New York, pp 79–102