Convergence of randomly weighted sums of Banach-space-valued random elements under some conditions of uniform integrability

Journal of Mathematical Sciences - Tập 138 - Trang 5450-5459 - 2006
M. Ordóñez Cabrera1, A. Volodin2
1Department of Mathematical Analysis, University of Sevilla, Sevilla, Spain
2Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada

Tài liệu tham khảo

T. K. Chandra, “Uniform integrability in the Cesàro sense and the weak law of large numbers,” Sankhya, Ser. A, 51, 309–317 (1989). A. Gut, “The weak law of large numbers for arrays,” Statist. Probab. Lett., 14, 49–52 (1992). J. Hoffmann-Jorgensen and G. Pisier, “The law of large numbers and the central limit theorem in Banach spaces,” Ann. Probab., 4, 587–599 (1976). T. C. Hu, M. Ordóñez Cabrera, and A. I. Volodin, “Convergence of randomly weighted sums of Banach space valued random elements and uniform integrability concerning the random weights,” Statist. Probab. Lett., 51, 155–164 (2001). J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin (1977). M. Ordóñez Cabrera, “Convergence of weighted sums of random variables and uniform integrability concerning the weights,” Collect. Math., 45, 121–132 (1994). M. Ordóñez Cabrera, “Convergence in mean of weighted sums of a nk -compactly uniformly integrable random elements in Banach spaces,” Intern. J. Math. Math. Sci., 20, 443–450 (1997). M. Ordóñez Cabrera and A. I. Volodin, “On conditional compactly uniform pth-order integrability of random elements in Banach spaces,” Statist. Probab. Lett., 55, 301–309 (2001). V. K. Rohatgi, “Convergence of weighted sums of independent random variables,” Proc. Cambridge Philos. Soc., 69, 305–307 (1971). A. Rosalsky and M. Sreehari, “On the limiting behavior of randomly weighted partial sums,” Statist. Probab. Lett., 40, 403–410 (1998). S. J. Szarek, “A Banach space without a basis which has the bounded approximation property,” Acta Math., 159, Nos. 1–2, 81–98 (1987). X. C. Wang and M. B. Rao, “A note on convergence of weighted sums of random variables,” Intern. J. Math. Math. Sci., 8, 805–812 (1985). X. C. Wang and M. B. Rao, “Some results on the convergence of weighted sums of random elements in separable Banach spaces,” Stud. Math., 86, 131–153 (1987).