Geometry of the Lagrangian Grassmannian LG(3,6) with applications to Brill-Noether Loci
Tóm tắt
Từ khóa
Tài liệu tham khảo
P. Griffiths and J. Harris, <i>Principles of algebraic geometry,</i> Wiley, New York, 1978.
J. M. Landsberg and L. Manivel, <i>The projective geometry of Freudenthal's magic square,</i> J. Algebra 239 (2001), 477--512.
D. Bayer and M. Stillman, <i>MACAULAY: A system for computation in algebraic geometry and commutative algebra,</i> Source and object code available for Unix and Macintosh computers [contact the authors or download from $\langle $zariski.harvard.edu$\rangle$ via anonymous ftp].
A. Bertram, <i>Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves in the projective space,</i> J. Differential Geom. 35 (1992), 429--469.
A. Bertram and B. Feinberg, <i>On stable rank two bundles with canonical determinant and many sections,</i> Proceedings of the Europroj Annual Conferences (Catania/Barcelona, 1993/94), Lecture Notes in Pure and Appl. Math., 100, pp. 259--269, Dekker, New York, 1998.
R. Braun, G. Ottaviani, M. Schneider, and F.-O. Schreyer, <i>Classification of conic bundles in</i> $\bold P^5,\!$ Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 69--97.
W. Decker, N. Manolache, and F.-O. Schreyer, <i>Geometry of the Horrocks bundle on</i> $\bold P^5,\!$ Complex projective geometry (Trieste and Bergen, 1989) London Math. Soc. Lecture Note Ser., 179, pp. 128--148, Cambridge Univ. Press, Cambridge, 1992.
W. Fulton, <i>Intersection theory,</i> Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984.
W. Fulton and J. Harris, <i>Representation theory,</i> Grad. Texts in Math., 129, Springer-Verlag, New York, 1991.
T. L. Gomez, <i>Brill--Noether theory on singular curves and torsion-free sheaves on surfaces,</i> Comm. Anal. Geom. 9 (2001), 725--756.
A. Iliev, <i>The</i> $\text\rm Sp_3$<i>-Grassmannian and duality for prime Fano threefolds of genus 9,</i> Manuscripta Math. 112 (2003), 29--53.
A. Iliev and D. Markushevich, <i>Elliptic curves and rank-2 vector bundles on the prime Fano threefold of genus 7,</i> Adv. Geom. 4 (2004), 287--318.
V. A. Iskovskikh, <i>Fano threefolds I,</i> Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 516--562.
------, <i>Double projection from a line onto Fano threefolds of the first kind,</i> Math. USSR-Sb. 66 (1990), 265--284.
T. Kimura, <i>The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces,</i> Nagoya Math. J. 85 (1982), 1--80.
B. G. Moishezon, <i>Algebraic homology classes on algebraic varieties,</i> Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225--268.
S. Mukai, <i>On the moduli space of bundles on</i> $K3$ <i>surfaces. I,</i> Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, pp. 341--413, Tata Inst. Fund. Res., Bombay, 1987.
------, <i>Curves,</i> $K3$ <i>surfaces and Fano</i> $3$<i>-folds of</i> $\text\it genus\le10,\!$ Algebraic geometry and commutative algebra, vol. I, pp. 357--387, Kinokuniya, Tokyo, 1988.
------, <i>Moduli of vector bundles on</i> $K3$ <i>surfaces, and symplectic manifolds,</i> Sugaku Expositions 1 (1988), 139--174.
------, <i>Biregular classification of Fano 3-folds and Fano manifolds of coindex 3,</i> Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3000--3002.
------, <i>Fano 3-folds,</i> Complex projective geometry (Trieste and Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, pp. 255--263, Cambridge Univ. Press, Cambridge, 1992.
------, <i>Curves and Grassmannians,</i> Algebraic geometry and related topics (Inchon, Korea, 1992), Conf. Proc. Lecture Notes Algebraic Geom., 1, pp. 19--40, International Press, Cambridge, MA, 1993.
------, <i>Vector bundles and Brill--Noether theory,</i> Current topics in complex algebraic geometry (Berkeley, 1992/93), Math. Sci. Res. Inst. Publ., 28, pp. 145--158, Cambridge Univ. Press, Cambridge, 1995.
-----, <i>Non-Abelian Brill--Noether theory and Fano 3-folds,</i> Sugaku Expositions 14 (2001), 125--153.
------, <i>Curves and symmetric spaces II,</i> preprint, RIMS-1395, 2003.
M. S. Narasimhan and C. S. Seshadri, <i>Stable and unitary vector bundles on a compact Riemann surface,</i> Ann. of Math. (2) 82 (1965), 540--567.
W. Oxbury, C. Pauly, and E. Previato, <i>Subvarieties of</i> $SU_C(2)$ <i>and</i> $2\theta$ <i>divisors in the Jacobian,</i> Trans. Amer. Math. Soc. 350 (1998), 3587--3614.
P. Pragacz, <i>Algebro-geometric applications of Schur</i> $S$<i>- and</i> $Q$<i>-polynomials,</i> Topics in invariant theory (Paris, 1989/90), Lecture Notes in Math., 1478, pp. 130--191, Springer-Verlag, Berlin, 1991.
M. Sato and T. Kimura, <i>A classification of irreducible prehomogeneous vector spaces and their relative invariants,</i> Nagoya Math. J. 65 (1977), 1--155.
C. S. Seshadri, <i>Vector bundles on curves,</i> Linear algebraic groups and their representations (Los Angeles, 1992), Contemp. Math., 153, pp. 163--200, Amer. Math. Soc., Providence, RI, 1993.
V. Trofimov and A. Fomenko, <i>Algebra and geometry of integrable Hamiltonian differential equations</i> (in Russian), Fizmatlit, Moscow, 1992.
A. N. Tyurin, <i>Classification of vector bundles over an algebraic curve of arbitrary genus,</i> Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 657--688.