Novel cardiovascular gene functions revealed via systematic phenotype prediction in zebrafish

Development (Cambridge) - Tập 141 Số 1 - Trang 224-235 - 2014
Gabriel Musso1,2, Murat Taşan3,4, Christian Mosimann5,6,7, John Beaver3, Eva Plovie1, Logan A. Carr5,6,7, Hon Nian Chua4, Julie Dunham4, Khalid Zuberi4, Harold Rodriguez4, Quaid Morris4, Leonard I. Zon5,6,7, Frederick P. Roth8,3,4,9, Calum A. MacRae1,2
1Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
2Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
4Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
5Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
6Howard Hughes Medical Institute, Boston, MA 02115, USA
7Stem Cell Program, Children's Hospital Boston, Boston, MA 02115, USA
8Center for Cancer Systems Biology, Dan-Farber Cancer Institute, Boston, MA 02115, USA
9Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON, M5G 1X5, Canada

Tóm tắt

Comprehensive functional annotation of vertebrate genomes is fundamental to biological discovery. Reverse genetic screening has been highly useful for determination of gene function, but is untenable as a systematic approach in vertebrate model organisms given the number of surveyable genes and observable phenotypes. Unbiased prediction of gene-phenotype relationships offers a strategy to direct finite experimental resources towards likely phenotypes, thus maximizing de novo discovery of gene functions. Here we prioritized genes for phenotypic assay in zebrafish through machine learning, predicting the effect of loss of function of each of 15,106 zebrafish genes on 338 distinct embryonic anatomical processes. Focusing on cardiovascular phenotypes, the learning procedure predicted known knockdown and mutant phenotypes with high precision. In proof-of-concept studies we validated 16 high-confidence cardiac predictions using targeted morpholino knockdown and initial blinded phenotyping in embryonic zebrafish, confirming a significant enrichment for cardiac phenotypes as compared with morpholino controls. Subsequent detailed analyses of cardiac function confirmed these results, identifying novel physiological defects for 11 tested genes. Among these we identified tmem88a, a recently described attenuator of Wnt signaling, as a discrete regulator of the patterning of intercellular coupling in the zebrafish cardiac epithelium. Thus, we show that systematic prioritization in zebrafish can accelerate the pace of developmental gene function discovery.

Từ khóa


Tài liệu tham khảo

Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2

Amsterdam, 1999, A large-scale insertional mutagenesis screen in zebrafish, Genes Dev., 13, 2713, 10.1101/gad.13.20.2713

Amsterdam, 2004, Identification of 315 genes essential for early zebrafish development, Proc. Natl. Acad. Sci. USA, 101, 12792, 10.1073/pnas.0403929101

Arnaout, 2007, Zebrafish model for human long QT syndrome, Proc. Natl. Acad. Sci. USA, 104, 11316, 10.1073/pnas.0702724104

Ashburner, 2000, Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25, 10.1038/75556

Auman, 2007, Functional modulation of cardiac form through regionally confined cell shape changes, PLoS Biol., 5, e53, 10.1371/journal.pbio.0050053

Barrett, 2006, Gene expression omnibus: microarray data storage, submission, retrieval, and analysis, Methods Enzymol., 411, 352, 10.1016/S0076-6879(06)11019-8

Beaver, 2010, FuncBase: a resource for quantitative gene function annotation, Bioinformatics, 26, 1806, 10.1093/bioinformatics/btq265

Boutros, 2004, Genome-wide RNAi analysis of growth and viability in Drosophila cells, Science, 303, 832, 10.1126/science.1091266

Bradford, 2011, ZFIN: enhancements and updates to the Zebrafish Model Organism Database, Nucleic Acids Res., 39, D822, 10.1093/nar/gkq1077

Burns, 2005, High-throughput assay for small molecules that modulate zebrafish embryonic heart rate, Nat. Chem. Biol., 1, 263, 10.1038/nchembio732

Camarata, 2010, Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation, Dev. Biol., 337, 233, 10.1016/j.ydbio.2009.10.039

Cannon, 2013, Global analysis of the haematopoietic and endothelial transcriptome during zebrafish development, Mech. Dev., 130, 122, 10.1016/j.mod.2012.10.002

Costanzo, 2010, The genetic landscape of a cell, Science, 327, 425, 10.1126/science.1180823

Deng, 2004, An integrated probabilistic model for functional prediction of proteins, J. Comput. Biol., 11, 463, 10.1089/1066527041410346

Driever, 1996, A genetic screen for mutations affecting embryogenesis in zebrafish, Development, 123, 37, 10.1242/dev.123.1.37

Ekker, 2001, Morphant technology in model developmental systems, Genesis, 30, 89, 10.1002/gene.1038

Etard, 2010, Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos, J. Cell Biol., 189, 527, 10.1083/jcb.200912125

Fu, 2009, The molecular structures and expression patterns of zebrafish troponin I genes, Gene Expr. Patterns, 9, 348, 10.1016/j.gep.2009.02.001

Gentleman, 2004, Bioconductor: open software development for computational biology and bioinformatics, Genome Biol., 5, R80, 10.1186/gb-2004-5-10-r80

Giaever, 2002, Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418, 387, 10.1038/nature00935

Golling, 2002, Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development, Nat. Genet., 31, 135, 10.1038/ng896

Guan, 2008, A genomewide functional network for the laboratory mouse, PLoS Comput. Biol., 4, e1000165, 10.1371/journal.pcbi.1000165

Haffter, 1996, The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio, Development, 123, 1, 10.1242/dev.123.1.1

Hasdemir, 2010, Transcriptional profiling of septal wall of the right ventricular outflow tract in patients with idiopathic ventricular arrhythmias, Pacing Clin. Electrophysiol., 33, 159, 10.1111/j.1540-8159.2009.02606.x

Heasman, 2002, Morpholino oligos: making sense of antisense?, Dev. Biol., 243, 209, 10.1006/dbio.2001.0565

Howe, 2013, The zebrafish reference genome sequence and its relationship to the human genome, Nature, 496, 498, 10.1038/nature12111

Huang, 2011, Heritable gene targeting in zebrafish using customized TALENs, Nat. Biotechnol., 29, 699, 10.1038/nbt.1939

Huttenhower, 2009, Exploring the human genome with functional maps, Genome Res., 19, 1093, 10.1101/gr.082214.108

Hwang, 2013, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol., 31, 227, 10.1038/nbt.2501

Kamath, 2003, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature, 421, 231, 10.1038/nature01278

Kanehisa, 2008, KEGG for linking genomes to life and the environment, Nucleic Acids Res., 36, D480, 10.1093/nar/gkm882

Karaoz, 2004, Whole-genome annotation by using evidence integration in functional-linkage networks, Proc. Natl. Acad. Sci. USA, 101, 2888, 10.1073/pnas.0307326101

Kettleborough, 2013, A systematic genome-wide analysis of zebrafish protein-coding gene function, Nature, 496, 494, 10.1038/nature11992

King, 2003, Predicting phenotype from patterns of annotation, Bioinformatics, 19, i183, 10.1093/bioinformatics/btg1024

Kwan, 2007, The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs, Dev. Dyn., 236, 3088, 10.1002/dvdy.21343

Langenbacher, 2005, Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish, Proc. Natl. Acad. Sci. USA, 102, 17699, 10.1073/pnas.0502679102

Lazic, 2011, Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish, Dev. Biol., 354, 123, 10.1016/j.ydbio.2011.03.028

Lee, 2004, A probabilistic functional network of yeast genes, Science, 306, 1555, 10.1126/science.1099511

Lee, 2008, A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans, Nat. Genet., 40, 181, 10.1038/ng.2007.70

Lee, 2010, Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein, J. Biol. Chem., 285, 41549, 10.1074/jbc.M110.193383

Levesque, 2003, Trait-to-gene: a computational method for predicting the function of uncharacterized genes, Curr. Biol., 13, 129, 10.1016/S0960-9822(03)00009-5

Linghu, 2009, Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network, Genome Biol., 10, R91, 10.1186/gb-2009-10-9-r91

Manning, 2008, Introduction to Information Retrieval, 10.1017/CBO9780511809071

Maranto, 1994, Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium, J. Biol. Chem., 269, 1222, 10.1016/S0021-9258(17)42246-0

Marlow, 1998, Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish, Dev. Biol., 203, 382, 10.1006/dbio.1998.9032

Meng, 2008, Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases, Nat. Biotechnol., 26, 695, 10.1038/nbt1398

Mosimann, 2011, Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish, Development, 138, 169, 10.1242/dev.059345

Mostafavi, 2008, GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function, Genome Biol., 9, S4, 10.1186/gb-2008-9-s1-s4

Nasevicius, 2000, Effective targeted gene ‘knockdown’ in zebrafish, Nat. Genet., 26, 216, 10.1038/79951

Novikov, 2013, Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling, Development, 140, 3787, 10.1242/dev.093567

Palpant, 2013, Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development, Development, 140, 3799, 10.1242/dev.094789

Panáková, 2010, Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca(2+) channel, Nature, 466, 874, 10.1038/nature09249

Pellegrini, 1999, Assigning protein functions by comparative genome analysis: protein phylogenetic profiles, Proc. Natl. Acad. Sci. USA, 96, 4285, 10.1073/pnas.96.8.4285

Peña-Castillo, 2008, A critical assessment of Mus musculus gene function prediction using integrated genomic evidence, Genome Biol., 9, S2, 10.1186/gb-2008-9-s1-s2

Peterson, 2009, RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis, J. Vis. Exp., 30, 1470

Peterson, 2000, Small molecule developmental screens reveal the logic and timing of vertebrate development, Proc. Natl. Acad. Sci. USA, 97, 12965, 10.1073/pnas.97.24.12965

Robu, 2007, p53 activation by knockdown technologies, PLoS Genet., 3, e78, 10.1371/journal.pgen.0030078

Saha, 2006, In silico prediction of yeast deletion phenotypes, Genet. Mol. Res., 5, 224

Sehnert, 2002, Cardiac troponin T is essential in sarcomere assembly and cardiac contractility, Nat. Genet., 31, 106, 10.1038/ng875

Shin, 2010, High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish, Physiol. Genomics, 42, 300, 10.1152/physiolgenomics.00206.2009

Sing, 2005, ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940, 10.1093/bioinformatics/bti623

Stainier, 1996, Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo, Development, 123, 285, 10.1242/dev.123.1.285

Stark, 2010, Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy, PLoS Genet., 6, e1001167, 10.1371/journal.pgen.1001167

Subramanian, 2005, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, 102, 15545, 10.1073/pnas.0506580102

Taşan, 2008, An en masse phenotype and function prediction system for Mus musculus, Genome Biol., 9, S8, 10.1186/gb-2008-9-s1-s8

Tasan, 2012, A resource of quantitative functional annotation for homo sapiens genes, G3 (Bethesda), 2, 223, 10.1534/g3.111.000828

Thisse, 2008, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nat. Protoc., 3, 59, 10.1038/nprot.2007.514

Tian, 2008, Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function, Genome Biol., 9, S7, 10.1186/gb-2008-9-s1-s7

Troyanskaya, 2003, A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae), Proc. Natl. Acad. Sci. USA, 100, 8348, 10.1073/pnas.0832373100

Villard, 2011, A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy, Eur. Heart J., 32, 1065, 10.1093/eurheartj/ehr105

Vogel, 2009, In-vivo characterization of human dilated cardiomyopathy genes in zebrafish, Biochem. Biophys. Res. Commun., 390, 516, 10.1016/j.bbrc.2009.09.129

Westerfield, 2000, The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio), 4th edn

Woods, 2013, Prediction of gene-phenotype associations in humans, mice, and plants using phenologs, BMC Bioinformatics, 14, 203, 10.1186/1471-2105-14-203

Wu, 2004, A model-based background adjustment for oligonucleotide expression arrays, J. Am. Stat. Assoc., 99, 909, 10.1198/016214504000000683

Zhou, 2011, Latent TGF-β binding protein 3 identifies a second heart field in zebrafish, Nature, 474, 645, 10.1038/nature10094