Local radon flux maxima in the quaternary sediments of Schleswig–Holstein (Germany)
Tóm tắt
This paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.
Tài liệu tham khảo
Al Hseinat M, Hübscher C (2017) Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophys 708:28–55. https://doi.org/10.1016/j.tecto.2017.04.021
Al Hseinat M, Hübscher C, Lang J, Lüdmann T, Ott I, Polom U (2016) Triassic to recent tectonic evolution of a crestal collapse graben above a salt-cored anticline in the Glückstadt Graben/North German Basin. Tectonophys 680:50–66. https://doi.org/10.1016/j.tecto.2016.05.008
Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze H-J, Stiller M, Beilecke T, Marotta A-M, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE German Basin. Tectonophys 314(1–3):285–307. https://doi.org/10.1016/S0040-1951(99)00249-8
Beck TR (2017) (2017) Risks and radiation doses due to residential radon in Germany. Radiat Prot Dosim 175(4):466–472. https://doi.org/10.1093/rpd/ncw374
Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. Wasserwirtsch Wassertech 14:165–169
Birke M, Rauch U, Lorenz H (2009) Uranium in stream and mineral water of the Federal Republic of Germany. Environ Geochem Health 31:693–703. https://doi.org/10.1007/s10653-009-9247-4
Böse M, Lüthgens C, Lee JR, Rose J (2012) Quaternary glaciations of northern Europe. Quat Sci Rev 44:1–25. https://doi.org/10.1016/j.quascirev.2012.04.017
Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions—a pilot study on granitic esker sand sample. J Environ Radioact 101(11):1002–1006. https://doi.org/10.1016/j.jenvrad.2010.07.008
Bundesamt für Strahlenschutz (2019) Radon-Handbuch Deutschland. https://www.bfs.de/SharedDocs/Downloads/BfS/DE/broschueren/ion/radon-handbuch.pdf. Accessed 2 Jan 2021
Bundesamt für Strahlenschutz (2020) Karte Radon-Potential. https://www.bfs.de/DE/themen/ion/umwelt/radon/karten/boden. Accessed 2 Jan 2021
Chen Z, Li Y, Liu Z, Wang J, Zhou X, Du J (2018) Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-35262-1
Chyi LL, Quick TJ, Yang TF, Chen CH (2010) The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast. Geofluids 10(4):556–563. https://doi.org/10.1111/j.1468-8123.2010.00308.x
Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Petrol 44:242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
Ehlers J, Eißmann L, Lippstreu L, Stephan H-J, Wansa S (2004) Pleistocene glaciations of North Germany. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part I: Europe, 1st edn. Elsevier, Amsterdam, pp 135–146
Ehlers J, Grube A, Stephan H-J, Wansa S (2011) Pleistocene glaciations of north Germany—new results. Dev Quat Sci 15:149–162. https://doi.org/10.1016/B978-0-444-53447-7.00013-1
Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193(2):291–300. https://doi.org/10.1007/bf02039886
Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129(3–4):185–204. https://doi.org/10.1016/S0031-9201(01)00292-8
Finne IE, Kolstad T, Larsson M, Olsen B, Prendergast J, Rudjord AL (2019) Significant reduction in indoor radon in newly built houses. J Environ Radioact 196:259–263. https://doi.org/10.1016/j.jenvrad.2018.01.013
George AC (2008) World history of radon research and measurement from the early 1900’s to today. In: The natural radiation environment—8th international symposium, AIP conference proceedings 1034, Brazil, pp 20–33
Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor (2001). In: Baldschuhn R, Binot F, Fleig S, Kockel F (eds) Geologisches Jahrbuch Reihe A, Band A 153. Schweizerbart’sche, Stuttgart
Giammanco S, Immè G, Mangano G, Morelli D, Neri M (2009) Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy). Appl Radiat Isot 67(1):178–185. https://doi.org/10.1016/j.apradiso.2008.09.007
Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sashoo SK, Tokonami S, Fukushi M (2009) Radon migration process and its influence factors; review. Jpn J Health Phys 44:218–231. https://doi.org/10.5453/jhps.44.218
Iovine G, Guagliardi I, Bruno C, Greco R, Tallarico A, Falcone G, Lucà F, Buttafuoco G (2018) Soil-gas radon anomalies in three study areas of Central-Northern Calabria (Southern Italy). Nat Hazards 91:193–219. https://doi.org/10.1007/s11069-017-2839-x
Irwin WP, Barnes I (1980) Tectonic relations of carbon dioxide discharges and earthquakes. J Geophys Res 85(B6):3115–3121. https://doi.org/10.1029/JB085iB06p03115
Karstens U, Schwingshackl C, Schmithüsen D, Levin I (2015) A process-based 222Rn flux map for Europe and its comparison to long-term observations. Atmos Chem Phys 15(22):12845–12865. https://doi.org/10.5194/acp-15-12845-2015
Kemski J, Klingel R, Siehl A (1996) Classification and mapping of radon-affected areas in Germany. Environ Int 22:789–798. https://doi.org/10.1016/S0160-4120(96)00185-7
Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272:217–230. https://doi.org/10.1016/S0048-9697(01)00696-9
Kemski J, Klingel R, Siehl A, Stegemann R (2005) Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. Radioact Environ 7:820–832. https://doi.org/10.1016/S1569-4860(04)07103-7
Köhn D, Thorwart M, De Nil D, Rabbel W, Sirocko F (2019) Charakterisierung einer Störungszone östlich des großen Plöner Sees (Schleswig Holstein) mittels 2D SH Full Waveform Inversion. In: 79th annual meeting of the German Geophysical Society, Braunschweig
Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Wellmann J, Keller G, Wichmann HE (2001) Case-Control study on lung cancer and residential radon in Western Germany. Am J Epidemiol 153:42–52. https://doi.org/10.1093/aje/153.1.42
Kropat G, Bochud F, Murith C, Palacios M, Baechler S (2017) Modeling of geogenic radon in Switzerland based on ordered logistic regression. J Environ Radioact 166:376–381. https://doi.org/10.1016/j.jenvrad.2016.06.007
Künze N, Koroleva M, Reuther CD (2012) 222Rn activity in soil gas across selected fault segments in the Cantabrian Mountains. NW Spain Radiat Meas 47(5):389–399. https://doi.org/10.1016/j.radmeas.2012.02.013
Künze N, Koroleva M, Reuther CD (2013) Soil gas 222Rn concentration in northern Germany and its relationship with geological subsurface structures. J Environ Radio 115:83–96. https://doi.org/10.1016/j.jenvrad.2012.07.009
Lehné R, Sirocko F (2005) Quantification of recent movement potentials in Schleswig–Holstein (Germany) by GIS-based calculation of correlation coefficients. Int J Earth Sci 94:1094–1102. https://doi.org/10.1007/s00531-005-0043-9
Lehné R, Sirocko F (2010) Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig–Holstein) derived by GIS-based analysis of repeated precise leveling data. Z Dtsch Ges Geowiss 162(2):175–188. https://doi.org/10.1127/1860-1804/2010/0161-0175
Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins, 1st edn. Springer, Berlin. https://doi.org/10.1007/978-3-540-85085-4_2
Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005) Structure and evolution of the Glueckstadt Graben due to salt movements. Int J Earth Sci (Geol Rundsch) 94:799–814. https://doi.org/10.1007/s00531-005-0003-4
Meier G (2003) Ingenieurgeologische Ergebnisse bei der Standsicherheitsanalyse der „Kalkberghöhle“ in Bad Segeberg. Tagung f Ing.-Geol 14, Kiel.
Menzler S, Piller G, Gruson M, Schaffrath-Rosario A, Wichmann HE, Kreienbrock L (2008) Population attributable fraction for lung cancer due to residential radon in Switzerland and Germany. Health Phys 95:179–189. https://doi.org/10.1097/01.HP.0000309769.55126.03
Ministerium für Energiewende, Landwirtschaft, Umwelt, Natur und Digitalisierung (2020) Pressemitteilung „Untersuchungsprogramm abgeschlossen: Radon-Belastung in Schleswig-Holstein liegt unterhalb der Schwellenwerte“. https://www.schleswig-holstein.de/DE/Landesregierung/V/Presse/PI/2020/1220/201207_Radon. Accessed 2 Jan 2021
Monnin MM, Seidel JL (1992) Radon in soil-air and in groundwater related to major geophysical events: a survey. Nucl Instrum Methods Phys Res A 314(2):316–330. https://doi.org/10.1016/0168-9002(92)90975-A
Mudelsee M, Albert J, Sirocko F (2020) Weather control in radon flux time series from Schleswig–Holstein. Germany Int J Geomath 11:23. https://doi.org/10.1007/s13137-020-00156-w
Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30(2):137–160. https://doi.org/10.1029/92RG00055
Neri M, Ferrera E, Giammanco S, Currenti G, Cirrincione R, Patanè G, Zanon V (2016) Soil radon measurements as a potential tracer of tectonic and volcanic activity. Sci Rep 6:1–12. https://doi.org/10.1038/srep24581
Perrier F, Richon P, Byrdina S et al (2009) A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth Planet Sci Let 278(3–4):198–207. https://doi.org/10.1016/j.epsl.2008.12.008
Richon P, Sabroux JC, Halbwachs M, Vandemeulebrouck J, Poussielgue N, Tabbagh J, Punongbayan R (2003) Radon anomaly in the soil of Taal volcano, the Philippines: a likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys Res Lett 30(9):1–4. https://doi.org/10.1029/2003GL016902
Rose AW, Hutter AR, Washington JW (1990) Sampling variability of radon in soil gases. J Geochem Explor 38:173–191. https://doi.org/10.1016/0375-6742(90)90100-O
Ross P-H (1998) Salzaufstieg und Geländemorphologie in Schleswig–Holstein—der Segeberger Salzstock und seine schutzwürdige Karstlandschaft. Jahrbuch für den Kreis Segeberg. C H Wäser, Bad Segeberg
Sainz Fernández S, Quindós Poncela LS, Fernández Villar A et al (2017) Spanish experience on the design of radon surveys based on the use of geogenic information. J Environ Radioact 166:390–397. https://doi.org/10.1016/j.jenvrad.2016.07.007
Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83(1):91–96. https://doi.org/10.1097/00004032-200207000-00010
Sciarra A, Mazzini A, Inguaggiato S, Vita F, Lupi M, Hadi S (2018) Radon and carbon gas anomalies along the Watukosek Fault System and Lusi mud eruption, Indonesia. Mar Pet Geol 90:77–90. https://doi.org/10.1016/j.marpetgeo.2017.09.031
Seiler KP (1973) Durchlässigkeit, Porosität und Kornverteilung quartärer Kies-Sand-Ablagerungen des bayerischen Alpenvorlandes. GWF Wasser Abwasser 114:353–400
Semkow TM (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim Cosmochim Acta 54(2):425–440. https://doi.org/10.1016/0016-7037(90)90331-E
Sirocko F (2012) Lüneburg und das Salz. www.klimaundsedimente.geowissenschaften.uni-mainz.de/projekt-lueneburg. Accessed 2 Jan 2021
Sirocko F, Szeder T, Seelos C, Lehné R, Rein B, Schneider WM, Dimke M (2002) Young tectonic and halokinetic movements in the North-German-Basin: its effect on formation of modern rivers and surface morphology. Neth J Geosci 81:431–441. https://doi.org/10.1017/S0016774600022708
Sirocko F, Reicherter K, Lehné R, Hübscher C, Winsemann J, Stackebrandt W (2008) Glaciation, salt and the present landscape. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins, 1st edn. Springer, Berlin, pp 233–246
Stein R (1985) Rapid grain-size analyses of clay and silt fraction by Sedigraph 5000D: comparison with Counter and Atterberg methods. J Sediment Petrol 55:590–615. https://doi.org/10.2110/55.4.590
Steinitz G, Begin ZB, Gazit-Yaari N (2003) Statistically significant relation between radon flux and weak earthquakes in the Dead Sea rift valley. Geology 31(6):505–508. https://doi.org/10.1130/0091-7613(2003)031%3c0505:SSRBRF%3e2.0.CO;2
Strong KP, Levins DM (1982) Effect of moisture content on radon emanation from uranium ore and tailings. Health Phys 42(1):27–32. https://doi.org/10.1097/00004032-198201000-00003
Tanner AB (1964) Radon migration in the ground: a review. In: Adams JAS, Lowder WM (eds) Natural radiation environment. University of Chicago Press, Chicago, pp 161–190
Tanner AB (1980) Radon migration in the ground: a supplementary review. In: Gesell, Lowder WM (ed) Proceedings of the symposium on third natural radiation environment 1, Houston, pp 5–56
Tareen ADK, Rafique M, Basharat M (2019) Study of diurnal and seasonal variations in the time series data of soil 222Rn gas. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1666834
Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5:9–12. https://doi.org/10.1007/s10311-006-0079-5
Tuccimei P, Soligo M (2008) Correction for CO2 interference in soil radon flux measurements. Radiat Meas 43(1):102–105. https://doi.org/10.1016/j.radmeas.2007.05.056
Turekian KK, Graustein WC (2003) Natural radionuclides in the atmosphere. In: Keeling RF, Holland HD, Turekian KK (ed) Treatise on geochemistry. The atmosphere, vol 4. Elsevier, Amsterdam, pp 262–279. https://doi.org/10.1016/B0-08-043751-6/04042-1
UNSCEAR (1982) Ionizing radiation: Sources and biological effects. UNSCEAR 1982 Report, New York
Wiederhold H, Agster G, Binot F, Kirsch R (2003) Geophysical investigations on the connection between salt structures and aquifers in Schleswig–Holstein. In: Mares S, Pospisil L (ed) Proceedings 9th meeting environmental and engineering geophysics: P-065, Prague. https://doi.org/10.3997/2214-4609.201414638
Winkler R, Ruckerbauer F, Bunzl K (2001) Radon concentration in soil gas: a comparison of the variability resulting from different methods, spatial heterogeneity and seasonal fluctuations. Sci Total Environ 272(1–3):273–282. https://doi.org/10.1016/S0048-9697(01)00704-5
Woith H (2015) Radon earthquake precursor: a short review. Eur Phys J Spec Top 224:611–627. https://doi.org/10.1140/epjst/e2015-02395-9
Yan R, Woith H, Wang R, Wang G (2017) Decadal radon cycles in a hot spring. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-12441-0
Yang J, Busen H, Scherb H, Hürkamp K, Guo Q, Tschiersch J (2019) Modeling of radon exhalation from soil influenced by environmental parameters. Sci Total Environ 656:1304–1311. https://doi.org/10.1016/j.scitotenv.2018.11.464