Three perspectives on complexity: entropy, compression, subsymmetry

The European Physical Journal Special Topics - Tập 226 - Trang 3251-3272 - 2017
Nithin Nagaraj1, Karthi Balasubramanian2
1Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India
2Department of Electronics and Communication Engineering, Amrita University, Coimbatore, India

Tóm tắt

There is no single universally accepted definition of ‘Complexity’. There are several perspectives on complexity and what constitutes complex behaviour or complex systems, as opposed to regular, predictable behaviour and simple systems. In this paper, we explore the following perspectives on complexity: effort-to-describe (Shannon entropy H, Lempel-Ziv complexity LZ), effort-to-compress (ETC complexity) and degree-of-order (Subsymmetry or SubSym). While Shannon entropy and LZ are very popular and widely used, ETC is relatively a new complexity measure. In this paper, we also propose a novel normalized complexity measure SubSym based on the existing idea of counting the number of subsymmetries or palindromes within a sequence. We compare the performance of these complexity measures on the following tasks: (A) characterizing complexity of short binary sequences of lengths 4 to 16, (B) distinguishing periodic and chaotic time series from 1D logistic map and 2D Hénon map, (C) analyzing the complexity of stochastic time series generated from 2-state Markov chains, and (D) distinguishing between tonic and irregular spiking patterns generated from the ‘Adaptive exponential integrate-and-fire’ neuron model. Our study reveals that each perspective has its own advantages and uniqueness while also having an overlap with each other.

Tài liệu tham khảo

L.A. Lipsitz, A.L. Goldberger, JAMA 267, 1806 (1992) P. Faure, H. Korn, C. R. Acad. Sci. III: Sci. 324, 773 (2001) H. Korn, P. Faure, C. R. Biol. 326, 787 (2003) N. Nagaraj, K.R. Sahasranand, Neural signal multiplexing via compressed sensing, in IEEE Int. Conf. on Signal Processing Communications (IEEE SPCOM) 2016, IISc, Bengaluru (2016), doi:10.1109/SPCOM.2016.7746641 S.P. Vadhan, Found. Trends Network 7, 1 (2012) N. Gauvrit, H. Zenil, J.-P. Delahaye, F. Soler-Toscano, Behav. Res. Methods 46, 732 (2014) G.T. Toussaint, N.S. Onea, Q.H. Vuong, Measuring the complexity of two-dimensional binary patterns – sub-symmetries versus papentin complexity, in 2015 14th IAPR International Conference on Machine Vision Applications (MVA) (2015), pp. 480–483 S. Lloyd, IEEE Control Syst. Mag. 21, 7 (2001) C. Alexander, S. Carey, Percept. Psychophys. 4, 73 (1968) C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948) T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012) N. Nagaraj, K. Balasubramanian, in Handbook of Research on Applied Cybernetics and Systems Science (IGI Global, 2017), pp. 301–334 M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer Science & Business Media, 2009) A. Lempel, J. Ziv, IEEE Trans. Inf. Theor. 22, 75 (1976) J. Ziv, A. Lempel, IEEE Trans. Inf. Theor. 23, 337 (1977) M. Aboy, R. Hornero, D. Abásolo, D. Álvarez, IEEE Trans. Biomed. Eng. 53, 2282 (2006) N. Nagaraj, K. Balasubramanian, S. Dey, Eur. Phys. J. Special Topics 222, 847 (2013) W. Ebeling, M.A. Jiménez-Montaño, Math. Biosci. 52, 53 (1980) N. Nagaraj, K. Balasubramanian, Eur. Phys. J. Special Topics 226, 2191 (2017) K. Balasubramanian, N. Nagaraj, PeerJ 4, e2755 (2016) M. Virmani, N. Nagaraj, A compression-complexity measure of integrated information, arXiv:1608.08450v2 (2016) J.M. Amigó, J. Szczepański, E. Wajnryb, M.V. Sanchez-Vives, Neural Comput. 16, 717 (2004) J. Hu, J. Gao, J.C. Principe, IEEE Trans. Biomed. Eng. 53, 2606 (2006) A.L. Goldberger, Physiology 6, 87 (1991) L.A. Lipsitz, Chaos: Interdiscip. J. Nonlinear Sci. 5, 102 (1995) K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos (Springer, 1997) W. Gersch, D.M. Eddy, E. Dong Jr., Comput. Biomed. Res. 3, 385 (1970) D. Coast, R.M. Stern, G.G. Cano, S. Briller, et al., IEEE Trans. Biomed. Eng. 37, 826 (1990) W. Gersch, P. Lilly, E. Dong, Comput. Biomed. Res. 8, 370 (1975) S.-T. Pan, Y.-H. Wu, Y.-L. Kung, H.-C. Chen, Heartbeat recognition from ECG signals using hidden Markov model with adaptive features, in 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (2013), pp. 586–591 M.S. Waterman, Mathematical methods for DNA sequences (CRC Press Inc., 1989) T.-J. Wu, Y.-C. Hsieh, L.-A. Li, Biometrics 57, 441 (2001) I. Sergienko, A. Gupal, A. Ostrovsky, Cybernet. Syst. Anal. 48, 369 (2012) L. Narlikar, N. Mehta, S. Galande, M. Arjunwadkar, Nucl. Acids Res. 41, 1416 (2013) A. Varga, R. Moore, Hidden Markov model decomposition of speech and noise, in International Conference on Acoustics, Speech and Signal Processing (ICASSP) (1990), pp. 845–848 B.H. Juang, L.R. Rabiner, Technometrics 33, 251 (1991) H. Veisi, H. Sameti, Speech Commun. 55, 205 (2013) R.P. Rao, N. Yadav, M.N. Vahia, H. Joglekar, R. Adhikari, I. Mahadevan, Proc. Natl. Acad. Sci. U. S. A. 106, 13685 (2009) R.P. Rao, IEEE Comput. 43, 76 (2010) G.A. Fink, Markov models for pattern recognition: from theory to applications (Springer Science & Business Media, 2014) G.V. Cormack, R. Horspool, Comput. J. 30, 541 (1987) H.S. Wang, N. Moayeri, IEEE Trans. Veh. Technol. 44, 163 (1995) H. Zhou, J. Bruck, IEEE Trans. Inf. Theor. 58, 2490 (2012) M. Svoboda, L. Lukas, Application of Markov chain analysis to trend prediction of stock indices, in Proceedings of 30th International Conference Mathematical Methodsin Economics (Silesian University, School of Business Administration, Karviná, 2012), pp. 848–853 F.O. Mettle, E.N.B. Quaye, R.A. Laryea, SpringerPlus 3, 1 (2014) R. Gütig, Curr. Opin. Neurobiol. 25, 134 (2014) R. Brette, W. Gerstner, J. Neurophysiol. 94, 3637 (2005) R. Naud, N. Marcille, C. Clopath, W. Gerstner, Biol. Cybernet. 99, 335 (2008)