In Vitro Biocidal Actions of Rhus verniciflua Bark Extract Wrapped Gold Nanoballs Against Biofilm-Forming Food-Borne Bacterial Pathogens
Tóm tắt
The research for innovative antibiofilm drugs is essential due to the increased microbial resistance to antibiotics presently in use. Now a day’s natural products wrapped nano biomaterial play an important role in the field of medicine. The aqueous bark extracts of Rhus verniciflua was used to synthesize gold nanoparticles (Rh-AuNPs) by green method. The synthesized nanoparticles were characterized (optical property, crystallinity, functional groups, size, shape and purity) by UV–vis spectroscopy (UV), X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission transmission electron microscopy (FE-TEM) with Energy dispersive X-ray (EDX). An effective antioxidant activity was observed at 100 μg/ml of Rh-AuNPs. The acridine orange, live and dead (PI-SYTO-9) staining assay using confocal laser scanning microscopic, results evidanced that the Rh-AuNPs (100 μg/ml) was effectively inhibited the biofilms of Escherichia coli and Staphylococcus aureus. In addition, Rh-AuNPs also significantly inhibited the cell surface hydrophobicity of both E. coli and S. aureus at 100 μg/ml. This study reports antibacterial potency of Rh-AuNPs and that have significant therapeutic properties.
Tài liệu tham khảo
N. R. Cooper (1991). Immunol. Today 12, 327.
T.-F. C. Mah and G. A. O’Toole (2001). Trends Microbiol. 9, 34.
N. B. Oral, L. Vatansever, B. D. Aydin, C. Sezer, A. Güven, M. Gülmez, et al. (2010). Kafkas Universitesi Veteriner Fakultesi Dergisi 16, S23.
E. Le Magrex-Debar, J. Lemoine, M. P. Gellé, L. F. Jacquelin, and C. Choisy (2000). Int. J Food Microbiol. 55, 239.
A. Bridier, P. Sanchez-Vizuete, M. Guilbaud, J. C. Piard, M. Naïtali, and R. Briandet (2015). Food Microbiol. 45, 167.
I. Olsen (2015). Eur. J. Clin. Microbiol. Infect. Dis. 34, 877.
V. Ramalingam, S. Dhanasundari, P. Nithiya, and R. Rajaram (2017). Ind. J. Chem. Technol. 24, 336.
V. Ramalingam, S. Revathidevi, T. S. Shanmuganayagam, L. Muthulakshmi, and R. Rajaram (2017). Gold Bull. 50, 177.
M. P. Patil and G.-D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 79.
M. Shah, D. Fawcett, S. Sharma, et al. (2015). Materials 8, 7278.
P. Manivasagan, S. Y. Nam, and J. Oh (2016). Crit. Rev. Microbiol. 42, 1007.
T. S. Dhas, V. G. Kumar, L. S. Abraham, et al. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 99, 97.
S. K. Das, C. Dickinson, F. Lafir, et al. (2012). Green Chem. 14, 1322.
P. Kappusamy, M. M. Yusoff, G. P. Maniam, et al. (2016). Saudi Pharm. J. 24, 473.
D. Mubarak Ali, N. Thanuddin, K. Jeganathan, et al. (2011). Colloids Surf B 85, 360.
R. Suryawanshi, C. Patil, H. Borase, et al. (2015). Parasitol. Int. 64, 353.
N. Soni and S. Prakash (2014). Sci. World J.. https://doi.org/10.1155/2014/496362.
A. Lakshmana, C. Umamaheswari, and N. S. Nagarajan (2016). J. Nanosci. Technol. 2, 76.
M. P. Patil, D. Ngabire, H. H. P. Thi, et al. (2017). J. Clust. Sci. 28, 119.
H. Hiramatsu and F. E. Osterloh (2004). Chem. Mater. 16, 2509.
J. Turkevich, P. C. Stevenson, and J. Hillier (1951). Discuss. Faraday Soc. 11, 55.
A. Yahim-Ammar, D. Sierra, F. Merola, et al. (2016). ACS Nano 10, 2591.
M. M. Bargazani and J. Rohloff (2016). Food Control 61, 156.
M. Di Giulio, S. Genovese, S. Fiorito, F. Epifano, A. Nostro, and L. Cellini (2016). Nat. Prod. Res. 30, 1870.
B. Anonymous (1993). Gram 28, 13.
M. M. Cowan (1999). Clin. Microbiol. Rev. 12, 564.
C. S. Na, B. R. Choi, D. W. Choo, W. I. Choi, J. B. Kim, H. J. Kim, Y. J. Chung, Y. I. Park, and M. S. Dong (2005). Yakhak Hoeji 49, 471.
J.-S. Kim, Y.-S. Kwon, W.-J. Chun, T.-Y. Kim, J. Sun, C.-Y. Yu, and M.-J. Kim (2010). Food Chem. 120, 539.
S. H. Lee, H. S. Jeong, and T. S. Kang (2013). Food Eng. Prog. 17, 1.
S. Y. Kang, J.-Y. Kang, and M.-J. Oh (2012). J. Microbiol. 50, 293.
W. C. Choi, H. S. Jung, K. S. Kim, S. K. Lee, S. W. Yoon, J. H. Park, S. H. Kim, S. H. Cheon, W. K. Eo, and S. H. Lee (2011). J. Biomed. Biotechnol. 2012, 1.
C. S. Na, B. R. Choi, D. W. Choo, W. I. Choi, J. B. Kim, H. C. Kim, Y. I. Park, and M. S. Dong (2005). J. Toxicol. Public Health 21, 309.
S. A. Kim, S. H. Kim, I. S. Kim, D. Lee, M. S. Dong, C. S. Na, N. X. Nhiem, and H. H. Yoo (2013). Food Chem. 141, 3813.
S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gopi, P. Ekambaram, R. Pachaiappan, P. Velusamy, K. Murugan, G. Benelli, R. Suresh Kumar, and M. Suriyanarayanamoorthy (2017). Microb. Pathog. 102, 173.
K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura (1992). J. Agric. Food Chem. 40, 945.
CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, vol. 32 (Clinical and Laboratory Standards Institute, Wayne, 2012), p. 69.
R. S. Pembrey, K. C. Marshall, and R. P. Schneider (1999). Appl. Environ. Microbiol. 65, 2877.
R. Vaikundamoorthy, R. Rajendran, A. Selvaraju, K. Moorthy, and S. Perumal (2018). Bioorg. Chem. 77, 494.
D. Divakaran, R. I. Jaya, M. Thakur, M. K. Kumawat, and R. Srivastava (2019). Mater. Lett. 236, 498.
G. Balasubramani, R. Ramkumar, R. Karthik Raja, D. Aiswarya, C. Rajthilak, and P. Perumal (2017). J. Clust. Sci. 28, 259.
P. Darshani, M. B. Gumpu, P. Thumpati, J. B. B. Rayappan, V. Ravichandiran, G. P. Pazhani, and M. Veerapandian (2018). J. Photochem. Photobiol. 182, 122.
B. Sadeghi, M. Mohammadzadeh, and B. Babakhani (2015). J. Photochem. Photobiol. 148, 101.
C. Wang, R. Mathiyalagan, Y. J. Kim, V. Castro-Aceituno, P. Singh, S. Ahn, D. Wang, and D. C. Yang (2016). Int. J. Nanomed. 11, 3691.
A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B Biointerfaces 28, 313.
V. P. N. Sanna, G. Dessì, P. Manconi, A. Mariani, S. Dedola, M. Rassu, C. Crosio, C. Iaccarino, and M. Sechi (2014). Int. J. Nanomed. 9, 4935.
B. E. Naveena and S. Prakash (2013). Asian J. Pharm. Clin. Res. 6, 179.
World Health Organization (WHO), Antimicrobial resistance. Fact sheet N 194 (WHO, Geneva, 2015). http://www.who.int/mediacentre/factsheets/fs194/en. Updated April, 2015.
G. Magi, E. Marini, and B. Facinelli (2015). Front. Microbiol. 6, 1.
A. Rai, A. Prabhune, and C. C. Perry (2010). J. Mater. Chem. 20, 6789.
N. Srivastava and M. Mukhopadhyay (2015). J. Clust. Sci. 26, 675.
G. Applerot, J. Lellouche, N. Perkas, N. Yeshayahu, A. Gedanken, and E. Banin (2012). RSC Adv. 2, 2314.
A. Hequet, V. Humblot, J. M. Berjeaud, and C. M. Pradier (2011). Colloids Surf. B. 84, 301.
D. Pavithra and M. Doble (2008). Biomed. Mater. 3, 34003.
F. Sun, F. Qu, Y. Ling, P. Mao, P. Xia, H. Chen, and D. Zhou (2013). Future Microbiol. 8, 877.
L. C. Simões, M. Simões, and M. J. Vieira (2007). Appl. Environ. Microbiol. 73, 6192.
S. K. R. Namasivayam, B. Beninton, B. Christo, S. M. Karthigai, K. Arun Muthu Kumar, and K. Deepak (2013). Glob. J. Med. Res. 13, 1.
J.A. Lizana, S. López, A. Marchal, U. Serrano, D. Velasco, and M. Espinosa-Urgel, High School Students for Agricultural Science Research, in Proceedings of the 3rd Congress PIIISA, 2013. Use of plant extracts to block bacterial biofilm formation, pp. 43–50.
S. Manju, B. Malaikozhundan, S. Vijayakumar, S. Shanthi, A. Jaishabanu, P. Ekambaram, and B. Vaseeharan (2016). Microb. Pathog. 91, 129.
J. K. Miller, R. Neubig, C. B. Clemons, K. L. Kreider, J. P. Wilber, G. W. Young, et al. (2013). Ann. Biomed. Eng. 41, 53.
M. M. Mohamed, S. A. Fouad, H. A. Elshoky, G. M. Mohammed, and T. A. Salaheldin (2017). IJVSM 5, 23.
N. J. Millenbaugh, J. B. Baskin, M. N. DeSilva, W. R. Elliott, and R. D. Glickman (2015). Int. J. Nanomed. 10, 1953.