Self-associated three-dimensional cones

Hildebrand, Roland1
1Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France

Tóm tắt

For every proper convex cone $$K \subset {\mathbb {R}}^3$$ there exists a unique complete hyperbolic affine 2-sphere with mean curvature $$-1$$ which is asymptotic to the boundary of the cone. Two cones are associated if the corresponding affine spheres can be mapped to each other by an orientation-preserving isometry. This equivalence relation is generated by the groups $$SL(3,{\mathbb {R}})$$ and $$S^1$$ , where the former acts by linear transformations of the ambient space, and the latter by multiplication of the cubic holomorphic differential of the affine sphere by unimodular complex constants. The action of $$S^1$$ generalizes conic duality, which acts by multiplication of the cubic differential by $$-1$$ . We call a cone self-associated if it is linearly isomorphic to all its associated cones, in which case the action of $$S^1$$ induces (nonlinear) isometries of the corresponding affine sphere. We give a complete classification of the self-associated cones and compute isothermal parameterizations of the corresponding affine spheres. Their metrics can be expressed in terms of degenerate Painlevé III transcendents. The boundaries of generic self-associated cones can be represented as conic hulls of vector-valued solutions of a certain third-order linear ordinary differential equation with periodic coefficients, but there exist also self-associated cones with polyhedral boundary parts. The self-associated cones are the second family of non-trivial 3-dimensional cones for which the affine spheres can be computed explicitly, the first being the semi-homogeneous cones.

Tài liệu tham khảo

citation_journal_title=Geom. Topol.; citation_title=Cubic differentials and finite volume convex projective surfaces; citation_author=Y Benoist, D Hulin; citation_volume=17; citation_issue=1; citation_publication_date=2013; citation_pages=595-620; citation_doi=10.2140/gt.2013.17.595; citation_id=CR1 citation_journal_title=J. Differ. Geom.; citation_title=Cubic differentials and hyperbolic convex sets; citation_author=Y Benoist, D Hulin; citation_volume=98; citation_issue=1; citation_publication_date=2014; citation_pages=1-19; citation_doi=10.4310/jdg/1406137694; citation_id=CR2 Bobenko, A.I., Eitner, U.: Painlevé equations in the differential geometry of surfaces. In: Lecture Notes in Mathematics, vol. 1753. Springer, Berlin (2000) citation_journal_title=Manuscr. Math.; citation_title=The Painlevé III equation and the Iwasawa decomposition; citation_author=AI Bobenko, A Its; citation_volume=87; citation_publication_date=1995; citation_pages=369-377; citation_doi=10.1007/BF02570481; citation_id=CR4 citation_journal_title=Manuscr. Math.; citation_title=On asymptotic cones of surfaces with constant curvature and the third Painlevé equation; citation_author=AI Bobenko, AV Kitaev; citation_volume=97; citation_publication_date=1998; citation_pages=489-516; citation_doi=10.1007/s002290050117; citation_id=CR5 citation_journal_title=Geom. Ded.; citation_title=Surfaces with harmonic inverse mean curvature and Painlevé equations; citation_author=AI Bobenko, U Eitner, AV Kitaev; citation_volume=68; citation_publication_date=1997; citation_pages=187-227; citation_doi=10.1023/A:1004976407316; citation_id=CR6 Calabi, E.: Complete affine hyperspheres I. In: Symposia Mathematica, vol. 10, pp. 19–38. Istituto Nazionale di Alta Matematica, Acad. Press (1972) citation_journal_title=Comm. Pure Appl. Math.; citation_title=On the regularity of the Monge-Ampère equation ; citation_author=SY Cheng, ST Yau; citation_volume=30; citation_publication_date=1977; citation_pages=41-68; citation_doi=10.1002/cpa.3160300104; citation_id=CR8 citation_journal_title=Comm. Pure Appl. Math.; citation_title=Complete affine hypersurfaces, Part I. The completeness of affine metrics; citation_author=SY Cheng, ST Yau; citation_volume=39; citation_publication_date=1986; citation_pages=839-866; citation_doi=10.1002/cpa.3160390606; citation_id=CR9 citation_journal_title=Abh. Math. Sem. Univ. Hamb.; citation_title=Weierstrass type representation of affine spheres; citation_author=JF Dorfmeister, U Eitner; citation_volume=71; citation_publication_date=2001; citation_pages=225-250; citation_doi=10.1007/BF02941473; citation_id=CR10 citation_title=A new look at equivariant minimal Lagrangian surfaces in ; citation_inbook_title=Geometry and Topology of Manifolds: 10th China-Japan Conference 2014, Springer Proceedings in Mathematics and Statistics; citation_publication_date=2016; citation_pages=97-126; citation_id=CR11; citation_author=JF Dorfmeister; citation_author=H Ma; citation_publisher=Springer Dorfmeister, J.F., Ma, H.: Explicit expressions for the Iwasawa factors, the metric and the monodromy matrices for minimal Lagrangian surfaces in $$mathbb{CP}^2$$ . In: Dynamical Systems, Number Theory and Applications, Chap. 2, pp. 19–47. World Scientific (2016b) citation_journal_title=Geom. Funct. Anal.; citation_title=Polynomial cubic differentials and convex polygons in the projective plane; citation_author=D Dumas, M Wolf; citation_volume=25; citation_publication_date=2015; citation_pages=1734-1798; citation_doi=10.1007/s00039-015-0344-5; citation_id=CR13 citation_journal_title=Int. Electron. J. Geom.; citation_title=The cross-ratio manifold: a model of centro-affine geometry; citation_author=R Hildebrand; citation_volume=4; citation_issue=2; citation_publication_date=2011; citation_pages=32-62; citation_id=CR14 citation_journal_title=Contrib. Algebra Geom.; citation_title=Analytic formulas for complete hyperbolic affine spheres; citation_author=R Hildebrand; citation_volume=55; citation_issue=2; citation_publication_date=2014; citation_pages=497-520; citation_doi=10.1007/s13366-013-0170-6; citation_id=CR15 Its, A.R., Novokshenov, V.Y.: The isomonodromic deformation method in the theory of Painlevé equations. In: Lecture Notes in Mathematics, vol. 1191. Springer, Berlin (1986) citation_journal_title=Zap. Nauchn. Sem. LOMI; citation_title=The method of isomonodromic deformations for the degenerate third Painlevé equation; citation_author=AV Kitaev; citation_volume=161; citation_publication_date=1987; citation_pages=45-53; citation_id=CR17 citation_journal_title=Pure Appl. Math. Q.; citation_title=Flat projective structures on surfaces and cubic holomorphic differentials; citation_author=F Labourie; citation_volume=3; citation_issue=4; citation_publication_date=2007; citation_pages=1057-1099; citation_doi=10.4310/PAMQ.2007.v3.n4.a10; citation_id=CR18 citation_journal_title=Math. Z.; citation_title=Calabi conjecture on hyperbolic affine hyperspheres; citation_author=AM Li; citation_volume=203; citation_publication_date=1990; citation_pages=483-491; citation_doi=10.1007/BF02570751; citation_id=CR19 citation_journal_title=Math. Ann.; citation_title=Calabi conjecture on hyperbolic affine hyperspheres (2); citation_author=AM Li; citation_volume=293; citation_publication_date=1992; citation_pages=485-493; citation_doi=10.1007/BF01444730; citation_id=CR20 citation_journal_title=J. Geom. Anal.; citation_title=On the uniqueness of vortex equations and its geometric applications; citation_author=Q Li; citation_volume=29; citation_publication_date=2019; citation_pages=105-120; citation_doi=10.1007/s12220-018-9981-x; citation_id=CR21 citation_title=Global Affine Differential Geometry of Hypersurfaces, De Gruyter Expositions in Mathematics; citation_publication_date=1993; citation_id=CR22; citation_author=AM Li; citation_author=U Simon; citation_author=G Zhao; citation_publisher=Walter de Gruyter citation_journal_title=J. Geom. Phys.; citation_title=Definite affine spheres and loop groups; citation_author=M Liang, Q Ji; citation_volume=60; citation_publication_date=2010; citation_pages=782-790; citation_doi=10.1016/j.geomphys.2010.01.010; citation_id=CR23 citation_journal_title=Acta Math. Sci. (English Ed.); citation_title=The associated families of semi-homogeneous complete hyperbolic affine spheres; citation_author=Z Lin, E Wang; citation_volume=36; citation_issue=3; citation_publication_date=2016; citation_pages=765-781; citation_doi=10.1016/S0252-9602(16)30038-8; citation_id=CR24 citation_journal_title=Asian J. Math.; citation_title=Dressing actions on proper definite affine spheres; citation_author=Z Lin, G Wang, E Wang; citation_volume=21; citation_issue=2; citation_publication_date=2017; citation_pages=363-390; citation_doi=10.4310/AJM.2017.v21.n2.a6; citation_id=CR25 Loftin, J.C.: Applications of affine differential geometry to $$\mathbb{RP}(2)$$ surfaces. Ph.D. thesis, Harvard University, Cambridge, MA (1999) citation_journal_title=Am. J. Math.; citation_title=Affine spheres and convex -manifolds; citation_author=JC Loftin; citation_volume=123; citation_issue=2; citation_publication_date=2001; citation_pages=255-275; citation_doi=10.1353/ajm.2001.0011; citation_id=CR27 citation_journal_title=J. Differ. Geom.; citation_title=The compactification of the moduli space of convex surfaces. I; citation_author=JC Loftin; citation_volume=68; citation_publication_date=2004; citation_pages=223-276; citation_doi=10.4310/jdg/1115669512; citation_id=CR28 citation_title=Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Tracts in Mathematics; citation_publication_date=1994; citation_id=CR29; citation_author=K Nomizu; citation_author=T Sasaki; citation_publisher=Cambridge University Press citation_journal_title=J. Math. Sci. Univ. Tokyo; citation_title=Studies on the Painlevé equations, V, Third Painlevé equations of special type and ; citation_author=Y Ohyama, H Kawamuko, H Sakai, K Okamoto; citation_volume=13; citation_publication_date=2006; citation_pages=145-204; citation_id=CR30 citation_journal_title=Comm. Math. Phys.; citation_title=Rational surfaces associated with affine root systems and geometry of the Painlevé equations; citation_author=H Sakai; citation_volume=220; citation_publication_date=2001; citation_pages=165-229; citation_doi=10.1007/s002200100446; citation_id=CR31 citation_journal_title=Nagoya Math. J.; citation_title=Hyperbolic affine hyperspheres; citation_author=T Sasaki; citation_volume=77; citation_publication_date=1980; citation_pages=107-123; citation_doi=10.1017/S0027763000018705; citation_id=CR32 Simon, U., Wang, C.P.: Local theory of affine 2-spheres. In: Differential Geometry: Riemannian Geometry. Proceedings of Symposia in Pure Mathematics, vol. 54(3), pp. 585–598. American Mathematical Society, Los Angeles (1993) citation_journal_title=Proc. Am. Math. Soc.; citation_title=Parabolic constant mean curvature spacelike surfaces; citation_author=TYH Wan, TKK Au; citation_volume=120; citation_issue=2; citation_publication_date=1994; citation_pages=559-564; citation_doi=10.1090/S0002-9939-1994-1169052-5; citation_id=CR34 Wang, C.P.: Some examples of complete hyperbolic affine 2-spheres in $$\mathbb{R}^3$$ . In: Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol. 1481, pp. 272–280. Springer (1991)