Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: Structural, optical, magnetic and catalytic properties
Tài liệu tham khảo
Sukumar, 2018, Co2+ substituted La2CuO4/LaCoO3 perovskite nanocomposites: synthesis, properties and heterogeneous catalytic performance, New J. Chem., 42, 18128, 10.1039/C8NJ04133D
Wang, 2019, Ethanol sensing characteristics of BaTiO3/LaFeO3 nanocomposite, Mater. Lett., 234, 40, 10.1016/j.matlet.2018.09.058
Gaikwad, 2015, Novel perovskite-spinel composite approach to enhance the magnetization of LaFeO3, RSC Adv., 5, 14366, 10.1039/C4RA11619D
Sahoo, 2018, Fabrication and characterization of LaFeO3-BaTiO3 electroceramics, Mater. Chem. Phys., 216, 158, 10.1016/j.matchemphys.2018.05.032
Lin, 2018, The structure and magnetic properties of magnesium-substituted LaFeO3 perovskite negative electrode material by citrate sol-gel, Int. J. Hydrogen Energy, 2
Yang, 2013, Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La2CuO4 nanofiber for methanol steam reforming, Int. J. Hydrogen Energy, 38, 1, 10.1016/j.ijhydene.2013.01.015
Xu, 2014, Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)4/r-GO in the presence of FeCl3, Appl. Catal. B Environ., 154–155, 267, 10.1016/j.apcatb.2014.02.034
Simidou, 2008, 2668
Staab, 2015
Long, 2016, Maximizing the effective Young's modulus of a composite material by exploiting the Poisson effect, Compos. Struct., 153, 593, 10.1016/j.compstruct.2016.06.061
Yelwande, 1856, SnO2/SiO2 nanocomposite catalyzed one-pot synthesis of 2-arylbenzothiazole derivatives, Bull. Korean Chem. Soc., 33, 1856, 10.5012/bkcs.2012.33.6.1856
Uchiyama, 2015, Preparation and characterization of Pd loaded Sr-deficient K2NiF4-type (La, Sr)2MnO4 catalysts for NO–CO reaction, Catal. Today, 251, 7, 10.1016/j.cattod.2014.09.033
Zhu, 2005, Characterization and catalytic activity in NO decomposition of La2-xSrxCuO4 (0 ≤ x ≤1) compounds with T* phase structure, Mater. Chem. Phys., 94, 257, 10.1016/j.matchemphys.2005.04.041
Li, 2012, Optical properties of La2CuO4 and La2−xCaxCuO4 crystallites in UV–vis–NIR region synthesized by sol–gel process, Mater. Char., 64, 36, 10.1016/j.matchar.2011.11.015
Moodenbaugh, 1988, Superconducting properties of La2-xBaxCuO4, Phys. Rev. B, 38, 4596, 10.1103/PhysRevB.38.4596
Zhao, 2007, High-resolution x-ray scattering studies of structural phase transitions in underdoped La2−xBaxCuO4, Phys. Rev. B, 76, 184121, 10.1103/PhysRevB.76.184121
Crawford, 2005, High-pressure study of structural phase transitions and superconductivity in La1.48Nd0.4Sr0.12CuO4, Phys. Rev. B Condens. Matter Mater. Phys., 71, 2, 10.1103/PhysRevB.71.104513
Dai, 2008, Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane, J. Nat. Gas Chem., 17, 415, 10.1016/S1003-9953(09)60019-0
Jaouali, 2018, LaFeO3 ceramics as selective oxygen sensors at mild temperature, Ceram. Int., 44, 4183, 10.1016/j.ceramint.2017.11.221
Zhang, 2017, Synthesis of Ag2O/NaNbO3 p-n junction photocatalysts with improved visible light photocatalytic activities, Separ. Purif. Technol., 178, 130, 10.1016/j.seppur.2017.01.031
Yang, 2013, Design of nanocrystalline mixed oxides with improved oxygen mobility: a simple non-aqueous route to nano-LaFeO3 and the consequences on the catalytic oxidation performances, Chem. Commun., 49, 4923, 10.1039/c3cc41163j
Zhang, 2017, Perovskite LaFeO3-SrTiO3 Composite for Synergistically Enhanced NO Removal under Visible Light Excitation, Appl. Catal. B: Environ., 204, 346, 10.1016/j.apcatb.2016.11.052
Izadkhah, 2017, LaBO3 (B: Mn, Fe, Co, Ni, Cu and Zn ) catalysts for CO + NO Reaction, Ind. Eng. Chem. Res., 56, 3880, 10.1021/acs.iecr.7b00457
Gallagher, 1977, Preparation, structure, and selected catalytic properties of the system LaMn1‐xCuxO3‐y, J. Am. Ceram. Soc., 60, 28, 10.1111/j.1151-2916.1977.tb16086.x
Xu, 2017, Photothermal catalytic activity of combustion synthesized LaCoxFe1−xO3 (0 ≤ x ≤ 1) perovskite for CO2 reduction with H2O to CH4 and CH3OH, RSC Adv., 7, 45949, 10.1039/C7RA04879C
Gao, 2006, Growth of La2CuO4 nanofibers under a mild condition by using single walled carbon nanotubes as templates, J. Solid State Chem., 179, 2036, 10.1016/j.jssc.2006.04.003
Hou, 2014, Crystal facet control of LaFeO3, LaCrO3, and La0.75Sr0.25MnO3, CrystEngComm, 16, 2874, 10.1039/c3ce42554a
Velasquez, 2014, Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst, Appl. Catal. B Environ., 160–161, 606, 10.1016/j.apcatb.2014.06.006
Mistri, 2016, Selective liquid phase benzyl alcohol oxidation over Cu-loaded LaFeO3 perovskite, RSC Adv., 6, 4469, 10.1039/C5RA22592B
Chen, 2015, Fluorination of La2-xSrxCuO4 (x = 0, 0.15, 0.3) and study on the crystal structures, magnetic properties of their fluorinated products, J. Alloy. Comp., 626, 239, 10.1016/j.jallcom.2014.12.027
Karthikeyan, 2018, Thermoelectric power factor of La0.9M0.1FeO3 (M = Ca and Ba) system: structural, band gap and electrical transport evaluations, Phys. B Condens. Matter, 529, 1, 10.1016/j.physb.2017.09.131
Sivakumar, 2004, Sonochemical synthesis of nanocrystalline LaFeO3, J. Mater. Chem., 14, 10.1039/b310110j
Zhou, 2001, Sensing behavior and mechanism of La2CuO4-SnO2 gas sensors, Sensor. Actuator. B Chem., 77, 443, 10.1016/S0925-4005(01)00721-3
Jain, 1981, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame, 40, 71, 10.1016/0010-2180(81)90111-5
Tang, 2014, Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries, Mater. Res. Bull., 57, 127, 10.1016/j.materresbull.2014.05.038
Anand, 2014, Structural, optical and magnetic characterization of Zn1-xNixAl2O4 (0 ≤ x ≤ 5) spinel nanostructures synthesized by microwave combustion technique, Ceram. Int., 41, 603, 10.1016/j.ceramint.2014.08.109
Sukumar, 2018, Structural, magnetic and catalytic properties of La2-xBaxCuO4 (0 ≤ x ≤ 0.5) perovskite nanoparticles, Ceram. Int., 44, 18113, 10.1016/j.ceramint.2018.07.017
Sukumar, 2018, Facile microwave assisted combustion synthesis, structural, optical and magnetic properties of La2−xSrxCuO4 (0 ≤ x ≤ 0.5) perovskite nanostructures, J. Magn. Magn. Mater., 465, 48, 10.1016/j.jmmm.2018.05.094
Zhao, 2017, Preparation, characterization and catalytic application of hierarchically porous LaFeO3 from a pomelo peel template, Inorg. Chem. Front., 4, 994, 10.1039/C6QI00600K
Sukumar, 2019, Catalytic conversion of methanol to formaldehyde over La2CuO4 nanoparticles, J. Nanosci. Nanotechnol., 19, 826, 10.1166/jnn.2019.15737
Enhessari, 2013, Synthesis, characterization and optical band gap of the La2CuO4 nanoparticles, Mater. Sci. Semicond. Process., 16, 1517, 10.1016/j.mssp.2013.05.005
Kumar, 2017, Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity, J. Phys. Chem. Solids, 101, 25, 10.1016/j.jpcs.2016.10.005
Upadhyay, 2016, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles, J. Alloy. Comp., 678, 478, 10.1016/j.jallcom.2016.03.279
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sec. A, 32, 751, 10.1107/S0567739476001551
Gao, 2016, Structural transformation, spectroscopic characterization and magnetic properties of La1-xGdxCoO3, Curr. Appl. Phys., 16, 922, 10.1016/j.cap.2016.05.009
Thanasilp, 2015, One-pot oxydehydration of glycerol to value-added compounds over metal-doped SiW/HZSM-5 catalysts: effect of metal type and loading, Chem. Eng. J., 275, 113, 10.1016/j.cej.2015.04.010
Ishak, 2016, Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst, Chem. Eng. J., 297, 128, 10.1016/j.cej.2016.03.104
Pullanikat, 2013, Direct conversion of glycerol into formic acid via water stable Pd(II) catalyzed oxidative carbon-carbon bond cleavage, Tetrahedron Lett., 54, 4463, 10.1016/j.tetlet.2013.06.041
Vajíček, 2016, Gel-type ion exchange resin stabilized Pd-Bi nanoparticles for the glycerol oxidation in liquid phase, J. Ind. Eng. Chem., 39, 77, 10.1016/j.jiec.2016.05.010