Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders

Journal of Materials Science: Materials in Electronics - Tập 31 - Trang 22789-22809 - 2020
Deniz Çoban Özkan1,2, Ahmet Türk3, Erdal Çelik4,5
1Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Manisa, Turkey
2Department of Mechanical Engineering, Manisa Celal Bayar University, Turgutlu, Turkey
3Department of Metallurgical and Materials Engineering, Manisa Celal Bayar University, Manisa, Turkey
4Department of Metallurgical and Materials Engineering, Dokuz Eylul University, Izmir, Turkey
5Council of Higher Education, Bilkent, Turkey

Tóm tắt

In this study, LaFeO3 perovskite powders were prepared via the sol–gel method in two different annealing temperatures (500 and 850 °C-according to DTA/TG results) for use in dye-sensitized solar cell applications. The thermal, structural, microstructural, particle size, optical and magnetic properties of the samples were characterized by differential thermal analysis (DTA)/thermogravimetric analysis (TG), Fourier transforms infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), particle size analysis (PSA), UV–Vis spectrometer and vibrating sample magnetometer (VSM). Our XRD findings show that the as-synthesized powders have an excellent crystallinity, and Scherrer’s Equation is used for the estimation of crystallite sizes (within 26–29 nm). Samples were analyzed to reveal the valence states of elements through XPS. Survey scan XPS spectra and high-resolution XPS spectra of La-3d5 and Fe-2p for LaFeO3 samples are given. SEMs employed to observe surface morphologies of all xerogel and ceramic perovskite powder materials and SEM images were verified with PSA results. UV–Vis spectrometer analysis results show that the optical bandgap values (Eg) as measured on both particles were found 2.42 eV. In addition to all analyses, the powders show ferromagnetic behavior, and VSM analyses are used to determine ferromagnetic properties. These results, especially low bandgap, make LaFeO3 powders possible to further increase the performance and efficiency of perovskite-based cells.

Tài liệu tham khảo

W. Azouzi, W. Sigle, H. Labrim, M. Benaissa, Sol–gel synthesis of nanoporous LaFeO3 powders for solar applications. Mater. Sci. Semicond. Process. 104, 104682 (2019). https://doi.org/10.1016/j.mssp.2019.104682 S. Guan, H. Yang, X. Sun, T. Xian, Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes. Opt. Mater. (Amst.) 100, 109644 (2020). https://doi.org/10.1016/j.optmat.2019.109644 M. Vučinić-Vasić, B. Antic, A. Kremenović, A.S. Nikolic, J. Blanusa, S. Rakić, V. Spasojevic, A. Kapor, Investigation of nanocrystalline phases in Li–La–Fe–O system formed by the decomposition of acetylacetonato complexes. J. Alloys Compd. 428, 322–326 (2007). https://doi.org/10.1016/j.jallcom.2006.03.042 A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836802 E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol–gel method. Ceram. Int. 43(10), 7922–7928 (2017). https://doi.org/10.1016/j.ceramint.2017.03.119 E. Hernnadez, V. Sagredo, G.E. Delgado, Synthesis and magnetic characterization of LaMnO3 nanoparticles. Revistamexican a defísica 61(3), 166–169 (2015) N.T. Thuy, D. Le Minh, Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/380306 Q. Lin, J. Lin, X. Yang, Y. He, L. Wang, J. Dong, The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 45, 3333–3340 (2019). https://doi.org/10.1016/j.ceramint.2018.10.246 L. Bian, M. Song, T. Zhou, X. Zhao, Q. Dai, Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2. J. Rare Earths 27, 461–468 (2009). https://doi.org/10.1016/S1002-0721(08)60270-7 S. Gong, Z. Xie, W. Li, X. Wu, N. Han, Y. Chen, Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Appl. Catal. B Environ. 241, 578–587 (2019). https://doi.org/10.1016/j.apcatb.2018.09.041 W. Li, F. Yang, P. Xiong, Y. Jia, J. Liu, X. Yan, X. Chen, Effect of Bi-doping on the electrocatalytic properties of LaFeO3 powders prepared by sol–gel method. J. Mater. Sci. 54, 7460–7468 (2019). https://doi.org/10.1007/s10853-019-03443-6 O. Wiranwetchayan, S. Promnopas, S. Phadungdhitidhada, A. Phuruangrat, T. Thongtem, P. Singjai, S. Thongtem, Characterization of perovskite LaFeO3 synthesized by microwave plasma method for photocatalytic applications. Ceram. Int. 45, 4802–4809 (2019). https://doi.org/10.1016/j.ceramint.2018.11.175 Y. Chen, J. Fan, T. Liu, J. Wang, M. Zhang, C. Zhang, Theoretical study on the effect of an O vacancy on the hydrogen storage properties of the LaFeO3 (010) surface. Int. J. Hydrog. Energy. 4, 5374–5381 (2019). https://doi.org/10.1016/j.ijhydene.2018.09.097 H. Huang, Q. Liu, B. Lu, X. Wang, J. Hu, LaMnO3-diamond composites as efficient oxygen reduction reaction catalyst for Zn-air battery. Diam. Relat. Mater. 91, 199–206 (2019). https://doi.org/10.1016/j.diamond.2018.11.024 T. Shou, Y. Li, M.T. Bernards, C. Becco, G. Cao, Y. Shi, Y. He, Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: byproduct control. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121750 J. Hu, L. Zhang, B. Lu, X. Wang, H. Huang, LaMnO3 nanoparticles supported on N doped porous carbon as efficient photocatalyst. Vacuum 159, 59–68 (2019). https://doi.org/10.1016/j.vacuum.2018.10.021 F. Li, Z. Wang, A. Wang, S. Wu, L. Zhang, N-type LaFe1-xMnxO3 prepared by sol–gel method for gas sensing. J. Alloys Compd. 816, 3–7 (2020). https://doi.org/10.1016/j.jallcom.2019.152647 N. Geetha, V. Senthil Kumar, D. Prakash, Synthesis and characterization of LaMn1-xFexO3 (x=0, 0.1, 0.2) by coprecipitation route. J. Phys. Chem. Biophys. 8, 1000273 (2018). https://doi.org/10.4172/2161-0398.1000273 L.N. Moghadam, Z.R. Ranjbar, Cost-efficient solar cells using nanocrystalline perovskite La(Fe and Mn)O3 and candle soot: theory and experiment. J. Alloys Compd. 785, 117–124 (2019). https://doi.org/10.1016/j.jallcom.2019.01.068 A. Moghtada, R. Ashiri, Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason. Sonochem. 33, 141–149 (2016). https://doi.org/10.1016/j.ultsonch.2016.05.002 G. Deng, Y. Chen, M. Tao, C. Wu, X. Shen, H. Yang, M. Liu, Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim. Acta 55, 1120–1124 (2010). https://doi.org/10.1016/j.electacta.2009.09.078 G.S. Lotey, N.K. Verma, Gd-doped BiFeO3 nanoparticles—a novel material for highly efficient dye-sensitized solar cells. Chem. Phys. Lett. 574, 71–77 (2013). https://doi.org/10.1016/j.cplett.2013.04.046 B.A.I. Shouli, S.H.I. Bingjie, M.A. Lijing, Y. Pengcheng, L.I.U. Zhiyong, L.I. Dianqing, C. Aifan, Synthesis of LaFeO3 catalytic materials and their sensing properties. Sci. China Ser. B Chem. (2009). https://doi.org/10.1007/s11426-009-0289-3 J.-H. Jeong, C.-G. Song, K.-H. Kim, W. Sigmund, J.-W. Yoon, Effect of Mn doping on particulate size and magnetic properties of LaFeO3 nanofiber synthesized by electrospinning. J. Alloys Compd. 749, 599–604 (2018). https://doi.org/10.1016/j.jallcom.2018.03.352 W. Haron, A. Wisitsoraat, S. Wongnawa, Nanostructured perovskite oxides—LaMO3 (M=Al Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. Ceram. Int. 43, 5032–5040 (2017). https://doi.org/10.1016/j.ceramint.2017.01.013 M. Idrees, M. Nadeem, S.A. Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors. Mater. Chem. Phys. 162, 652–658 (2015). https://doi.org/10.1016/j.matchemphys.2015.06.039 D. Sánchez-Rodríguez, H. Wada, S. Yamaguchi, J. Farjas, H. Yahiro, Synthesis of LaFeO3 perovskite-type oxide via solid-state combustion of a cyano complex precursor: the effect of oxygen diffusion. Ceram. Int. 43, 3156–3165 (2017). https://doi.org/10.1016/j.ceramint.2016.11.134 E.M. Kostyukhin, A.L. Kustov, L.M. Kustov, One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles. Ceram. Int. 45, 14384–14388 (2019). https://doi.org/10.1016/j.ceramint.2019.04.155 A. Ashok, A. Kumar, R.R. Bhosale, F. Almomani, S.S. Malik, S. Suslov, F. Tarlochan, Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J. Electroanal. Chem. 809, 22–30 (2018). https://doi.org/10.1016/j.jelechem.2017.12.043 A. Rezanezhad, E. Rezaie, L. Saleh, A. Hajalilou, E. Abouzari-lotf, N. Arsalani, Outstanding supercapacitor performance of Nd and Mn co-doped perovskite LaFeO3 @ nitrogen-doped graphene oxide nanocomposites. Electrochim. Acta 335, 135699 (2020). https://doi.org/10.1016/j.electacta.2020.135699 J.P. Palakkal, R.S. Cheriyedath, P.N. Lekshmi, M. Valant, Large positive and negative magnetodielectric coupling in Fe half-doped LaMnO3. J. Magn. Magn. Mater. 474, 183–186 (2019). https://doi.org/10.1016/j.jmmm.2018.10.121 Q. Peng, B. Shan, Y. Wen, R. Chen, Enhanced charge transport of LaFeO3 via transition metal (Mn Co, Cu) doping for visible light photoelectrochemical water oxidation. Int. J. Hydrog. Energy. 40, 15423–15431 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.072 K. Vojisavljević, P. Chevreux, J. Jouin, B. Malič, Characterization of the alkoxide-based sol–gel derived La9.33Si6O26 powder and ceramic. Acta Chim. Slov. 61, 530–541 (2014) E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties. J. Sol–Gel Sci. Technol. 50(3), 337–347 (2009). https://doi.org/10.1007/s10971-009-1931-4 T. Jia, Z. Zeng, H.Q. Lin, Y. Duan, P. Ohodnicki, First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La,Sr, B = Fe,Co) perovskites. RSC Adv (2017). https://doi.org/10.1039/c7ra06542f R. Rauer, Optical Spectroscopy of Strongly Correlated Transition-Metal Oxides (Cuvillier Verlag, Göttingen, 2005) A.C. Pierre, Introduction to Sol–Gel Processing (Springer US, Boston, 1998). https://doi.org/10.1007/978-1-4615-5659-6 C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, San Diego, 1990), pp. 25–30 E. Cao, Y. Yang, T. Cui, Y. Zhang, W. Hao, L. Sun, H. Peng, X. Deng, Effect of synthesis route on electrical and ethanol sensing characteristics for LaFeO3-δ nanoparticles by citric sol–gel method. Appl. Surf. Sci. 393, 134–143 (2017). https://doi.org/10.1016/j.apsusc.2016.10.013 J.D. Wright, N.A.J.M. Sommerdijk, Sol–Gel Materials (CRC Press, London, 2000), https://doi.org/10.1201/9781315273808 J. Wang, X. Cao, S. Liu, Y. Guo, Z. Wang, X. Li, Y. Ren, Z. Xia, H. Wang, C. Liu, N. Wang, W. Jiang, W. Ding, Preparation, structural and sintering properties of AZO nanoparticles by sol–gel combustion method. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.068 J.J. Siddiqui, K. Zhu, J. Qiu, H. Ji, Sol–gel synthesis, characterization and microwave absorbing properties of nano sized spherical particles of La0.8Sr0.2Mn0.8Fe0.2O3. Mater. Res. Bull. 47, 1961–1967 (2012). https://doi.org/10.1016/j.materresbull.2012.04.017 M. Yurddaskal, E. Celik, Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos. Struct. 183, 381–388 (2017). https://doi.org/10.1016/j.compstruct.2017.03.093 P.V. Gosavi, R.B. Biniwale, Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 119, 324–329 (2010). https://doi.org/10.1016/j.matchemphys.2009.09.005 X. Chen, J. Yu, S. Guo, S. Lu, Z. Luo, M. He, Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J. Mater. Sci. 44, 1324–1332 (2009). https://doi.org/10.1007/s10853-009-3273-6 E. Spahiu, ATR-FTIR evaluation of structural and functional changes on murine macrophage cells upon activation and suppression by immuno-therapeutic oligodeoxynucleotides. Middle East Technical University, 2015. https://etd.lib.metu.edu.tr/upload/12618753/index.pdf L. Lin, Z. Song, Z. Haider, X. Liu, W. Qiu, Enhanced As (III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Sci. Total Environ. 686, 1185–1193 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.480 M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: structural, optical, magnetic and catalytic properties. Mater. Sci. Semicond. Process. 100, 225–235 (2019). https://doi.org/10.1016/j.mssp.2019.04.049 J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978) H. Gao, C. Zheng, H. Yang, X. Niu, S. Wang, Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine B under simulated solar ırradiation. Micromachines (2019). https://doi.org/10.3390/mi10090557 R.G. Hayes, A.J. Signorelli, X-ray photoelectron spectroscopy of various core levels of lanthanide ıons: the roles of monopole excitation and electrostatic coupling. Phys. Rev. B (Cover. Condens. Matter Mater. Phys.) (1973). https://journals.aps.org/prb/abstract/. O.D. Dastjerdi, H. Shokrollahi, H. Yang, The enhancement of the Ce-solubility limit and saturation magnetization in the Ce0.25BixPryY2.75-x-yFe5O12 garnet synthesized by the conventional ceramic method. Ceram. Int. 46, 2709–2723 (2020). https://doi.org/10.1016/j.ceramint.2019.09.261 E.B. Simsek, Ö. Tuna, Z. Balta, Separation and purification technology construction of stable perovskite-type LaFeO3 particles on polymeric resin with boosted photocatalytic Fenton-like decaffeination under solar irradiation. Sep. Purif. Technol. 237, 116384 (2020). https://doi.org/10.1016/j.seppur.2019.116384 F.J. Maldonado-Hódar, H. Jirglová, S. Morales-Torres, A.F. Pérez-Cadenas, Influence of surfactants on the physicochemical properties and catalytic behaviour of Mo-doped carbon xerogels. Catal. Today 301, 217–225 (2018). https://doi.org/10.1016/j.cattod.2017.01.030 A.M. Hermansson, Microstructure of protein gels related to functionality. In R.Y. Yada, R.L. Jackman, J.L. Smith (eds) Protein Structure-Function Relationships in Foods. 1994, Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2670-4_2 I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M. Angel, A. Bonavita, G. Neri, S. Gianluca, LaFeO3 ceramics as selective oxygen sensors at mild temperature. Ceram. Int. 44, 4183–4189 (2018). https://doi.org/10.1016/j.ceramint.2017.11.221 N. Geetha, V. Senthil Kumar, D. Prakash, Synthesis and characterization of LaMn1-xFexO3 (x=0, 0.1, 0.2) by coprecipitation route. J. Phys. Chem. Biophys. 8, 273–278 (2018). https://doi.org/10.4172/2161-0398.1000273 Zetasizer Nano User Manual, Malvern Instruments Ltd., 2013. Y.T. O, J.B. Koo, K.J. Hong, J.S. Park, D.C. Shin, Effect of grain size on transmittance and mechanical strength of sintered alumina. Mater. Sci. Eng. A 374, 191–195 (2004). https://doi.org/10.1016/j.msea.2004.02.015 J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (2013). https://doi.org/10.1016/B978-0-08-046978-2.50029-6 V. Gruzdev, Ultrafast laser-induced modifications of energy bands of non-metal crystals. Proc. SPIE (2009). https://doi.org/10.1117/12.836908 S.P. Ghorpade, R.H. Krishna, R.M. Melavanki, V. Dubey, Effect of Eu3+ on optical and energy bandgap of SrY2O4 nanophosphors for FED applications. Opt. Int. J. Light Electron Opt. 208, 164533 (2020). https://doi.org/10.1016/j.ijleo.2020.164533 R. Köferstein, L. Jäger, S.G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ion. 249–250, 1–5 (2013). https://doi.org/10.1016/j.ssi.2013.07.001 D. Ramírez-Ortega, I. González, R. Arroyo, Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim. Acta 140, 541–546 (2014). https://doi.org/10.1016/j.electacta.2014.06.060 D. Ramírez-Ortega, D. Guerrero-araque, D. Ramírez-ortega, P. Acevedo-peña, Interfacial charge-transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity. J. Photochem. Photobiol. A Chem. 335, 276–286 (2016). https://doi.org/10.1016/j.jphotochem.2016.11.030 T. Vijayaraghavan, M. Bradha, P. Babu, K.M. Parida, G. Ramadoss, S. Vadivel, R. Selvakumar, A. Ashok, Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. J. Phys. Chem. Solids 140, 109377 (2020). https://doi.org/10.1016/j.jpcs.2020.109377 P. Mehdizadeh, O. Amiri, S. Rashki, M. Salavati-Niasari, M. Salimian, L.K. Foong, Effective removal of organic pollution by using sonochemical prepared LaFeO3 perovskite under visible light. Ultrason. Sonochem. 61, 104848 (2020). https://doi.org/10.1016/j.ultsonch.2019.104848 F. Alan, M. Tan, R. Yilgin, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012). https://doi.org/10.1016/j.ceramint.2012.01.001 K. Sebayang, D. Aryanto, S. Simbolon, C. Kurniawan, S.F. Hulu, T. Sudiro, M. Ginting, P. Sebayang, Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98Mn0.02O material. IOP Conf. Ser. Mater. Sci. Eng. 309, 1–8 (2018). https://doi.org/10.1088/1757-899X/309/1/012119