Exploring failure modes of alumina scales on FeCrAl and FeNiCrAl alloys in a nitriding environment

Acta Materialia - Tập 201 - Trang 131-146 - 2020
A.N. Mortazavi1, M. Esmaily2, C. Geers3, N. Birbilis4, Jan-Erik Svensson3, M. Halvarsson5, D. Chandrasekaran6, L.G. Johansson3
1School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, United States
3Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
4College of Engineering and Computer Science, The Australian National University, Canberra, Australia
5Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
6Kanthal AB, Hallstahammar, Sweden

Tài liệu tham khảo

B.A. Pint, High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys, in: B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott (Eds.), Shreir's Corrosion, Fourth ed., 2010, pp. 606-645. Jonsson, 2017, Oxidation comparison of alumina-forming and chromia-forming commercial alloys at 1100 and 1200 C, Oxid. Met., 88, 315, 10.1007/s11085-016-9710-4 Stott, 1971, A comparison of oxidation behavior of Fe–Cr–Al, Ni–Cr–Al, and Co–Cr–Al alloys, Oxid. Met., 3, 103, 10.1007/BF00603481 Stott, 1971, The mechanism of oxidation of Ni–Cr–Al alloys at 1000°–1200°C, Corros. Sci., 11, 799, 10.1016/S0010-938X(71)80044-6 Kvernes, 1972, Oxidation behavior of some Ni–Cr–Al alloys at hight temperatures, Metall. Trans., 3, 1511, 10.1007/BF02643040 Chyrkin, 2015, Effect of thermal cycling on protective properties of alumina scale grown on thin Haynes 214 foil, Corros. Sci., 98, 688, 10.1016/j.corsci.2015.06.020 Meetham, 1991, High-temperature materials – a general review, J, Mater. Sci., 26, 853, 10.1007/BF00576759 Young, 2016 Birks, 2006 Task, 2013, The effect of microstructure on the type II hot corrosion of Ni-base MCrAlY alloys, Oxid. Met., 80, 125, 10.1007/s11085-013-9405-z Heuer, 2011, Alumina scale formation: a new perspective, J. Am. Ceram. Soc., 94, 10.1111/j.1551-2916.2011.04777.x Gheno, 2017, A thermodynamic approach to guide reactive element doping: Hf additions to NiCrAl, Oxid. Met., 87, 297, 10.1007/s11085-016-9706-0 Whittle, 1980, Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions, Philos. Trans. R. Soc. Lond. B, 295, 309 Stringer, 1989, The reactive element effect in high-temperature corrosion, Mater. Sci. Eng. A, 120, 129, 10.1016/0921-5093(89)90730-2 Pint, 2003, Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys, J, Ceram. Soc., 86, 686, 10.1111/j.1151-2916.2003.tb03358.x Naumenko, 2016, Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer, Oxid. Met., 86, 1, 10.1007/s11085-016-9625-0 Geers, 2017, Properties of alumina/chromia scales in N2-containing low oxygen activity environment investigated by experiment and theory, Oxid. Met., 87, 321, 10.1007/s11085-016-9703-3 Jönsson, 2004, High temperature properties of a new powder metallurgical FeCrAl alloy, Mater. Sci. Forum, 461-464, 455, 10.4028/www.scientific.net/MSF.461-464.455 Mortazavi, 2018, Interplay of water and reactive elements in oxidation of alumina-forming alloys, Nat. Mater., 17, 610, 10.1038/s41563-018-0105-6 Mortazavi, 2015, The capability of transmission Kikuchi diffraction technique for characterizing nanograined oxide scales formed on a FeCrAl stainless steel, Mater. Lett., 147, 42, 10.1016/j.matlet.2015.02.008 Elger, 2017, Modelling internal nitridation in an alumina-forming austenitic stainless steel, Mater. Corros., 68, 143, 10.1002/maco.201508771 Udyavar, 2000, Precipitate morphologies and growth kinetics in the internal carburisation and nitridation of Fe-Ni-Cr alloys, Corros. Sci., 42, 861, 10.1016/S0010-938X(99)00095-5 Data from NIST Standard Reference Database 69. NIST Chemistry Webbook, 2016. Gorshkov, 1976, Structure and properties of modified high- speed steel EP658, Tr. Leningr. Politekh. Inst., 353, 40 Popandopulo, 1985, Effect of nitrogen on the stabilization of austenite in a tungsten-molybdenum high-speed steel, Met. Sci. Heat Treat., 27, 838, 10.1007/BF00699497 Reed, 1989, Nitrogen in austenite stainless steels, JOM, 41, 16, 10.1007/BF03220991 Speidel, 1992, High nitrogen stainless steels in chloride solutions, Mater. Perform., 31, 59 Hawk, 1994, Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels, J, Mater. Eng. Perform., 3, 259, 10.1007/BF02645852 Yang, 2007, Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates, J, Power Sources, 174, 228, 10.1016/j.jpowsour.2007.08.106 Liu, 2015, First three- dimensional atomic resolution investigation of thermally grown oxide on a FeCrAl Alloy, Oxid. Met., 83, 441, 10.1007/s11085-015-9530-y Kuo, 1953, Carbides in chromium, molybdenum and tungsten steels, J, Iron Steel Inst, 173, 363 Lustman, 1950, The intermittent oxidation of some nickel-chromium base alloys, JOM, 2, 995, 10.1007/BF03399095 Giggins, 1971, The oxidation of TD NiC (Ni-20Cr-2 vol pct ThO2) between 900° and 1200°C, Met. Trans., 2, 1071, 10.1007/BF02664238 Stringer, 1977, The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions, Thin Solid Films, 45, 377, 10.1016/0040-6090(77)90273-5 Allam, 1979, Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys, Oxid. Met., 13, 381, 10.1007/BF00609306 Pendse, 1985, The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions, Oxid. Met., 23, 1, 10.1007/BF01095804 Bale, 2016, J. Sangster and M-A. Van Ende, FactSage Thermochemical Software and Databases, 2010-2016, Calphad, 54, 35, 10.1016/j.calphad.2016.05.002 Han, 2004, Oxidation - nitridation of Ni-Cr-Al alloys, Mat. Res., 7, 11, 10.1590/S1516-14392004000100003 P.Y. Hou, Oxidation of Metals and Alloys, in: B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott (Eds.), Shreir's Corrosion, Fourth ed., 2010, pp. 195-239. Quadakkers, 1991, Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS, Appl. Surf. Sci., 52, 271, 10.1016/0169-4332(91)90069-V Hellström, 2015, Oxidation of a dispersion-strengthened powder metallurgical FeCrAl alloy in the presence of O2 at 1,100°C: the influence of water vapour, Oxid. Met., 83, 533, 10.1007/s11085-015-9534-7 Chevalier, 2008, Thermal alumina scales on FeCrAl: characterization and growth mechanism, Mater. Sci. Forum, 595-598, 915, 10.4028/www.scientific.net/MSF.595-598.915 Reszka, 2014, Characterization of alumina scale formed on FeCrAl steel, Arch. Metall. Mater., 59, 77, 10.2478/amm-2014-0013 Engkvist, 2010, Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1,100°C in dry O2 and in O2 + H2O, Oxid. Met., 73, 233, 10.1007/s11085-009-9177-7 Vlad, 2006, In situ x-ray study of the γ- to α-Al2O3 phase transformation during atmospheric pressure oxidation of NiAl(110), J, Mater. Res., 21, 3047, 10.1557/jmr.2006.0397 Tolpygo, 1998, Wrinkling of α-alumina films grown by thermal oxidation – I. Quantitative studies on single crystals of Fe-Cr-Al alloy, Acta Mater, 46, 5153, 10.1016/S1359-6454(98)00133-5 Tyagi, 2000, Significance of crystallographic grain orientation for oxide scale formation on FeCrAl ODS alloys studied by AFM and MCs+-SIMS, Mater. High Temp., 17, 159, 10.1179/mht.2000.023 Doychak, 1989, Transient oxidation of single-crystal B-NiAI, Metall. Mater. Trans. A, 20, 499, 10.1007/BF02653930 Grabke, 2003, Nitridation in NH3-H2O-mixtures, Mater. Corros., 54, 895, 10.1002/maco.200303730 Henriksson, 2008, Carbides in stainless steels: results from ab initio investigations, Appl. Phys. Lett., 93, 10.1063/1.3026175 Villars, 1985, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metal Park, Ohio Liu, 2010, TEM Investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900°C: the effect of Y-rich RE particles, Oxid. Met., 74, 11, 10.1007/s11085-010-9195-5 Ge, 1989, Effect of interfacial segregation of magnesium on high carbon (18%Cr) cast steel, Mater. Sci. Technol., 5, 1207, 10.1179/mst.1989.5.12.1207 Liu, 2008, Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900°C: A detailed microstructural investigation, Corros. Sci., 50, 2272, 10.1016/j.corsci.2008.05.019 Kusunoki, 1998, TEM study on stability of Mg-doped gamma alumina fine particles, Mater. Trans. JIM., 39, 110, 10.2320/matertrans1989.39.110 Pendse, 1985, The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions, Oxid. Met., 23, 1, 10.1007/BF01095804 Hindam, 1982, Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions, J, Electrochem. Soc., 129, 1147, 10.1149/1.2124044 Nowok, 1982, Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY, Oxid. Met., 18, 1, 10.1007/BF00656091 Quadakkers, 2001, Practical aspects of the reactive element effect, Mater. Sci. Forum., 369–372, 77, 10.4028/www.scientific.net/MSF.369-372.77