Exploring failure modes of alumina scales on FeCrAl and FeNiCrAl alloys in a nitriding environment
Tài liệu tham khảo
B.A. Pint, High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys, in: B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott (Eds.), Shreir's Corrosion, Fourth ed., 2010, pp. 606-645.
Jonsson, 2017, Oxidation comparison of alumina-forming and chromia-forming commercial alloys at 1100 and 1200 C, Oxid. Met., 88, 315, 10.1007/s11085-016-9710-4
Stott, 1971, A comparison of oxidation behavior of Fe–Cr–Al, Ni–Cr–Al, and Co–Cr–Al alloys, Oxid. Met., 3, 103, 10.1007/BF00603481
Stott, 1971, The mechanism of oxidation of Ni–Cr–Al alloys at 1000°–1200°C, Corros. Sci., 11, 799, 10.1016/S0010-938X(71)80044-6
Kvernes, 1972, Oxidation behavior of some Ni–Cr–Al alloys at hight temperatures, Metall. Trans., 3, 1511, 10.1007/BF02643040
Chyrkin, 2015, Effect of thermal cycling on protective properties of alumina scale grown on thin Haynes 214 foil, Corros. Sci., 98, 688, 10.1016/j.corsci.2015.06.020
Meetham, 1991, High-temperature materials – a general review, J, Mater. Sci., 26, 853, 10.1007/BF00576759
Young, 2016
Birks, 2006
Task, 2013, The effect of microstructure on the type II hot corrosion of Ni-base MCrAlY alloys, Oxid. Met., 80, 125, 10.1007/s11085-013-9405-z
Heuer, 2011, Alumina scale formation: a new perspective, J. Am. Ceram. Soc., 94, 10.1111/j.1551-2916.2011.04777.x
Gheno, 2017, A thermodynamic approach to guide reactive element doping: Hf additions to NiCrAl, Oxid. Met., 87, 297, 10.1007/s11085-016-9706-0
Whittle, 1980, Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions, Philos. Trans. R. Soc. Lond. B, 295, 309
Stringer, 1989, The reactive element effect in high-temperature corrosion, Mater. Sci. Eng. A, 120, 129, 10.1016/0921-5093(89)90730-2
Pint, 2003, Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys, J, Ceram. Soc., 86, 686, 10.1111/j.1151-2916.2003.tb03358.x
Naumenko, 2016, Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer, Oxid. Met., 86, 1, 10.1007/s11085-016-9625-0
Geers, 2017, Properties of alumina/chromia scales in N2-containing low oxygen activity environment investigated by experiment and theory, Oxid. Met., 87, 321, 10.1007/s11085-016-9703-3
Jönsson, 2004, High temperature properties of a new powder metallurgical FeCrAl alloy, Mater. Sci. Forum, 461-464, 455, 10.4028/www.scientific.net/MSF.461-464.455
Mortazavi, 2018, Interplay of water and reactive elements in oxidation of alumina-forming alloys, Nat. Mater., 17, 610, 10.1038/s41563-018-0105-6
Mortazavi, 2015, The capability of transmission Kikuchi diffraction technique for characterizing nanograined oxide scales formed on a FeCrAl stainless steel, Mater. Lett., 147, 42, 10.1016/j.matlet.2015.02.008
Elger, 2017, Modelling internal nitridation in an alumina-forming austenitic stainless steel, Mater. Corros., 68, 143, 10.1002/maco.201508771
Udyavar, 2000, Precipitate morphologies and growth kinetics in the internal carburisation and nitridation of Fe-Ni-Cr alloys, Corros. Sci., 42, 861, 10.1016/S0010-938X(99)00095-5
Data from NIST Standard Reference Database 69. NIST Chemistry Webbook, 2016.
Gorshkov, 1976, Structure and properties of modified high- speed steel EP658, Tr. Leningr. Politekh. Inst., 353, 40
Popandopulo, 1985, Effect of nitrogen on the stabilization of austenite in a tungsten-molybdenum high-speed steel, Met. Sci. Heat Treat., 27, 838, 10.1007/BF00699497
Reed, 1989, Nitrogen in austenite stainless steels, JOM, 41, 16, 10.1007/BF03220991
Speidel, 1992, High nitrogen stainless steels in chloride solutions, Mater. Perform., 31, 59
Hawk, 1994, Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels, J, Mater. Eng. Perform., 3, 259, 10.1007/BF02645852
Yang, 2007, Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates, J, Power Sources, 174, 228, 10.1016/j.jpowsour.2007.08.106
Liu, 2015, First three- dimensional atomic resolution investigation of thermally grown oxide on a FeCrAl Alloy, Oxid. Met., 83, 441, 10.1007/s11085-015-9530-y
Kuo, 1953, Carbides in chromium, molybdenum and tungsten steels, J, Iron Steel Inst, 173, 363
Lustman, 1950, The intermittent oxidation of some nickel-chromium base alloys, JOM, 2, 995, 10.1007/BF03399095
Giggins, 1971, The oxidation of TD NiC (Ni-20Cr-2 vol pct ThO2) between 900° and 1200°C, Met. Trans., 2, 1071, 10.1007/BF02664238
Stringer, 1977, The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions, Thin Solid Films, 45, 377, 10.1016/0040-6090(77)90273-5
Allam, 1979, Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys, Oxid. Met., 13, 381, 10.1007/BF00609306
Pendse, 1985, The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions, Oxid. Met., 23, 1, 10.1007/BF01095804
Bale, 2016, J. Sangster and M-A. Van Ende, FactSage Thermochemical Software and Databases, 2010-2016, Calphad, 54, 35, 10.1016/j.calphad.2016.05.002
Han, 2004, Oxidation - nitridation of Ni-Cr-Al alloys, Mat. Res., 7, 11, 10.1590/S1516-14392004000100003
P.Y. Hou, Oxidation of Metals and Alloys, in: B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott (Eds.), Shreir's Corrosion, Fourth ed., 2010, pp. 195-239.
Quadakkers, 1991, Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS, Appl. Surf. Sci., 52, 271, 10.1016/0169-4332(91)90069-V
Hellström, 2015, Oxidation of a dispersion-strengthened powder metallurgical FeCrAl alloy in the presence of O2 at 1,100°C: the influence of water vapour, Oxid. Met., 83, 533, 10.1007/s11085-015-9534-7
Chevalier, 2008, Thermal alumina scales on FeCrAl: characterization and growth mechanism, Mater. Sci. Forum, 595-598, 915, 10.4028/www.scientific.net/MSF.595-598.915
Reszka, 2014, Characterization of alumina scale formed on FeCrAl steel, Arch. Metall. Mater., 59, 77, 10.2478/amm-2014-0013
Engkvist, 2010, Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1,100°C in dry O2 and in O2 + H2O, Oxid. Met., 73, 233, 10.1007/s11085-009-9177-7
Vlad, 2006, In situ x-ray study of the γ- to α-Al2O3 phase transformation during atmospheric pressure oxidation of NiAl(110), J, Mater. Res., 21, 3047, 10.1557/jmr.2006.0397
Tolpygo, 1998, Wrinkling of α-alumina films grown by thermal oxidation – I. Quantitative studies on single crystals of Fe-Cr-Al alloy, Acta Mater, 46, 5153, 10.1016/S1359-6454(98)00133-5
Tyagi, 2000, Significance of crystallographic grain orientation for oxide scale formation on FeCrAl ODS alloys studied by AFM and MCs+-SIMS, Mater. High Temp., 17, 159, 10.1179/mht.2000.023
Doychak, 1989, Transient oxidation of single-crystal B-NiAI, Metall. Mater. Trans. A, 20, 499, 10.1007/BF02653930
Grabke, 2003, Nitridation in NH3-H2O-mixtures, Mater. Corros., 54, 895, 10.1002/maco.200303730
Henriksson, 2008, Carbides in stainless steels: results from ab initio investigations, Appl. Phys. Lett., 93, 10.1063/1.3026175
Villars, 1985, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metal Park, Ohio
Liu, 2010, TEM Investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900°C: the effect of Y-rich RE particles, Oxid. Met., 74, 11, 10.1007/s11085-010-9195-5
Ge, 1989, Effect of interfacial segregation of magnesium on high carbon (18%Cr) cast steel, Mater. Sci. Technol., 5, 1207, 10.1179/mst.1989.5.12.1207
Liu, 2008, Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900°C: A detailed microstructural investigation, Corros. Sci., 50, 2272, 10.1016/j.corsci.2008.05.019
Kusunoki, 1998, TEM study on stability of Mg-doped gamma alumina fine particles, Mater. Trans. JIM., 39, 110, 10.2320/matertrans1989.39.110
Pendse, 1985, The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions, Oxid. Met., 23, 1, 10.1007/BF01095804
Hindam, 1982, Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions, J, Electrochem. Soc., 129, 1147, 10.1149/1.2124044
Nowok, 1982, Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY, Oxid. Met., 18, 1, 10.1007/BF00656091
Quadakkers, 2001, Practical aspects of the reactive element effect, Mater. Sci. Forum., 369–372, 77, 10.4028/www.scientific.net/MSF.369-372.77