A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA

Cell - Tập 147 Số 2 - Trang 358-369 - 2011
Marcella Cesana1, Davide Cacchiarelli1, Ivano Legnini1, Tiziana Santini1, Olga Sthandier1, Mauro Chinappi2, Anna Tramontano3,2,4, Irene Bozzoni3,1,5,4
1Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
2Department of Physics, “Sapienza” University of Rome, P.Le A.Moro 5, 00185, Rome, Italy
3Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
4Institut Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
5IBPM of Consiglio Nazionale delle Ricerche (CNR), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abou El Hassan, 2009, A rapid simple approach to quantify chromosome conformation capture, Nucleic Acids Res., 37, e35, 10.1093/nar/gkp028

Amaral, 2008, Noncoding RNA in development. Mamm. Genome 19, 454–492, Genome Res., 17, 556

Ballarino, 2009, Coupled RNA processing and transcription of intergenic primary microRNAs, Mol. Cell. Biol., 29, 5632, 10.1128/MCB.00664-09

Beltran, 2008, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition, Genes Dev., 22, 756, 10.1101/gad.455708

Buckingham, 2009, Distinct and dynamic myogenic populations in the vertebrate embryo, Curr. Opin. Genet. Dev., 19, 444, 10.1016/j.gde.2009.08.001

Cacchiarelli, 2010, MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway, Cell Metab., 12, 341, 10.1016/j.cmet.2010.07.008

Cacchiarelli, 2011, miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy, EMBO Rep., 12, 136, 10.1038/embor.2010.208

Chaumeil, 2006, A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced, Genes Dev., 20, 2223, 10.1101/gad.380906

Chargé, 2004, Cellular and molecular regulation of muscle regeneration, Physiol. Rev., 84, 209, 10.1152/physrev.00019.2003

Chen, 2006, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nat. Genet., 38, 228, 10.1038/ng1725

Eisenberg, 2007, Distinctive patterns of microRNA expression in primary muscular disorders, Proc. Natl. Acad. Sci. USA, 104, 17016, 10.1073/pnas.0708115104

Enright, 2003, MicroRNA targets in Drosophila, Genome Biol., 5, R1, 10.1186/gb-2003-5-1-r1

Ginger, 2006, A noncoding RNA is a potential marker of cell fate during mammary gland development, Proc. Natl. Acad. Sci. USA, 103, 5781, 10.1073/pnas.0600745103

Gong, 2011, lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′, Nature, 470, 284, 10.1038/nature09701

Incitti, 2010, Exon skipping and Duchenne Muscular Dystrophy therapy: Selection of the most active U1 snRNA-antisense able to induce dystrophin exon 51skipping, Mol. Ther., 18, 1675, 10.1038/mt.2010.123

Karreth, 2011, In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma, Cell, 147, 382, 10.1016/j.cell.2011.09.032

Khaitan, 2011, The melanoma-upregulated long noncoding RNA SPRY4-IN1 modulates apoptosis and invasion, Cancer Res., 71, 3852, 10.1158/0008-5472.CAN-10-4460

Lilly, 1995, Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila, Science, 267, 688, 10.1126/science.7839146

Lin, 1997, Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C, Science, 276, 1404, 10.1126/science.276.5317.1404

Loewer, 2010, Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells, Nat. Genet., 42, 1113, 10.1038/ng.710

McCarthy, 2008, MicroRNA-206: the skeletal muscle-specific myomiR, Biochim. Biophys. Acta, 1779, 682, 10.1016/j.bbagrm.2008.03.001

Mattick, 2011, The central role of RNA in human development and cognition, FEBS Lett., 585, 1600, 10.1016/j.febslet.2011.05.001

Moore, 2009, Pre-mRNA processing reaches back to transcription and ahead to translation, Cell, 136, 688, 10.1016/j.cell.2009.02.001

Nagano, 2011, No-nonsense functions for long noncoding RNAs, Cell, 145, 178, 10.1016/j.cell.2011.03.014

Okitsu, 2010, Transcriptional activity affects the H3K4me3 level and distribution in the coding region, Mol. Cell. Biol., 30, 2933, 10.1128/MCB.01478-09

Poliseno, 2010, A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, 465, 1033, 10.1038/nature09144

Potthoff, 2007, Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2C, Mol. Cell. Biol., 27, 8143, 10.1128/MCB.01187-07

Qureshi, 2010, Long non-coding RNAs in nervous system function and disease, Brain Res., 18, 20, 10.1016/j.brainres.2010.03.110

Rao, 2006, Myogenic factors that regulate expression of muscle-specific microRNAs, Proc. Natl. Acad. Sci. USA, 103, 8721, 10.1073/pnas.0602831103

Rinn, 2007, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell, 129, 1311, 10.1016/j.cell.2007.05.022

Salmena, 2011, The ceRNA hypothesis: the Rosetta stone of a hidden RNA language, Cell, 146, 353, 10.1016/j.cell.2011.07.014

Shen, 2006, The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis, Genes Dev., 20, 675, 10.1101/gad.1383706

Sleutels, 2002, The non-coding Air RNA is required for silencing autosomal imprinted genes, Nature, 415, 810, 10.1038/415810a

Sumazin, 2011, An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma, Cell, 147, 370, 10.1016/j.cell.2011.09.041

Tan-Wong, 2008, Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene, Proc. Natl. Acad. Sci. USA, 105, 5160, 10.1073/pnas.0801048105

Tay, 2011, Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs, Cell, 147, 344, 10.1016/j.cell.2011.09.029

Tripathi, 2010, The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation, Mol. Cell, 39, 925, 10.1016/j.molcel.2010.08.011

West, 2005, Remote control of gene transcription, Hum. Mol. Genet, 14, R101, 10.1093/hmg/ddi104

Williams, 2009, MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice, Science, 326, 1549, 10.1126/science.1181046

Wilson-Rawls, 1999, Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C, Mol. Cell. Biol., 19, 2853, 10.1128/MCB.19.4.2853

Yuasa, 2008, MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy, Cell Struct. Funct., 33, 163, 10.1247/csf.08022

Zhao, 2005, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis, Nature, 436, 214, 10.1038/nature03817

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.

Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., et al. (2011). NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res. 39 (Database issue), D1005–D1010.

Cardinali, B., Castellani, L., Fasanaro, P., Basso, A., Alemà, S., Martelli, F., and Falcone, G. (2009). Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS ONE 4, e7607.

Denti, M.A., Rosa, A., D'Antona, G., Sthandier, O., De Angelis, F.G., Nicoletti, C., Allocca, M., Pansarasa, O., Parente, V., Musarò, A., et al. (2006). Body-wide gene therapy of Duchenne Muscular Dystrophy in the mdx mouse model. Proc. Natl. Acad. Sci. USA 103, 3758–3763.

Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most Mammalian mRNAs Are Conserved Targets of MicroRNAs. Genome Res. 19, 92–105.

Fujita, P.A., et al. (2010). The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876–D882.

Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008). miRBase: tools for microRNAgenomics. Nucleic Acids Res. 36, D154–D158.

Kozak, M. (1989). The scanning model for translation: an update. J. Cell Biol. 108, 229–241.

Loots, G., and Ovcharenko, I. (2004). rVista 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res. 32, W217–W221.

Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050.

Tomczak, K.K., Marinescu, V.D., Ramoni, M.F., Sanoudou, D., Montanaro, F., Han, M., Kunkel, L.M., Kohane, I.S., and Beggs, A.H. (2004). Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J. 18, 403–405.