Effect of porosity and temperature on thermal conductivity of jennite: A molecular dynamics study

Materials Chemistry and Physics - Tập 250 - Trang 123146 - 2020
Song-Nam Hong1, Chol-Jun Yu1, Un-Song Hwang1, Chung-Hyok Kim1, Byong-Hyok Ri2
1Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People’s Republic of Korea
2Changhun-Kumsu Agency for New Technology Exchange, Mangyongdae District, Pyongyang, Democratic People's Republic of Korea

Tài liệu tham khảo

Monteiro, 2017, Towards sustainable concrete, Nature Mater., 16, 698, 10.1038/nmat4930 Dong, 2019, Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation, ACS Appl. Mater. Interface, 11, 42801, 10.1021/acsami.9b14929 Du, 2020, Molecular dynamics simulations of the precipitation of calcium silicate hydrate nanostructures under two-dimensional confinement by TiO2: implications for advanced concretes, ACS Appl. Nano Mater., 3, 2176, 10.1021/acsanm.9b02203 Izadifar, 2019, Correlation between composition and mechanical properties of calcium silicate hydrates identified by infrared spectroscopy and density functional theory, J. Phys. Chem. C, 123, 10868, 10.1021/acs.jpcc.8b11920 Hajilar, 2015, Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations, Comput. Mater. Sci., 101, 216, 10.1016/j.commatsci.2014.12.006 Jiang, 2018, Understanding the deformation mechanism and mechanical characteristics of cementitious mineral analogues from first-principles and reactive force field molecular dynamics, Phys. Chem. Chem. Phys., 20, 13920, 10.1039/C7CP08640G Fan, 2018, Mechanical properties of C-S-H globules and interfaces by molecular dynamics simulation, Constr. Build. Mater., 176, 573, 10.1016/j.conbuildmat.2018.05.085 Rejmak, 2012, 29Si NMR in cement: A theoretical study on Calcium silicate hydrates, J. Phys. Chem. C, 116, 9755, 10.1021/jp302218j Cuesta, 2018, Multiscale understanding of tricalcium silicate hydration reaction, Sci. Rep., 8, 8544, 10.1038/s41598-018-26943-y Richardson, 2010, Characterisation of cement hydrate phases by tem, NMR and Raman spectroscopy, Adv. Cem. Res., 22, 233, 10.1680/adcr.2010.22.4.233 Richardson, 1999, The nature of Csh in hardened cements, Cem. Concr. Res., 29, 1131, 10.1016/S0008-8846(99)00168-4 Taylor, 2005, Proposed structure for calcium silicate hydrate gel, J. Am. Ceram. Soc., 69, 464, 10.1111/j.1151-2916.1986.tb07446.x Pellenq, 2009, A realistic molecular model of cement hydrates, Proc. Natl. Acad. Sci., 106, 16102, 10.1073/pnas.0902180106 Allen, 2007, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nature Mater., 6, 311, 10.1038/nmat1871 Hou, 2015, Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics, Phys. Chem. Chem. Phys., 17, 1411, 10.1039/C4CP04137B Qomi, 2014, Combinatorial molecular optimization of cement hydrates, Nature Commun., 5, 4960, 10.1038/ncomms5960 Vidmer, 2014, Infrared spectra of jennite and tobermorite from first-principles, Cem. Concr. Res., 60, 11, 10.1016/j.cemconres.2014.03.004 Bonaccorsi, 2004, The crystal structure of jennite, Ca9si6(OH)6 ⋅8h2o, Cem. Concr. Res., 34, 1481, 10.1016/j.cemconres.2003.12.033 Merlino, 2001, The real structure of tobermorite 11 Å normal and anomalous forms, OD character and polytypic modifications, Eur. J. Mineral., 13, 577, 10.1127/0935-1221/2001/0013-0577 Bonaccorsi, 2005, The crystal structure of 14 Å (plombierite), a C-S-H phase, J. Am. Ceram. Soc., 88, 505, 10.1111/j.1551-2916.2005.00116.x Shahsavari, 2009, First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite, J. Am. Ceram. Soc., 92, 2323, 10.1111/j.1551-2916.2009.03199.x Moon, 2015, Mechanical properties of jennite: A theoretical and experimental study, Cem. Concr. Res., 71, 106, 10.1016/j.cemconres.2015.02.005 Hou, 2015, Structure, reactivity and mechanical properties of water ultra-confined in the ordered crystal: A case study of jennite, Microporous Mesoporous Mater., 204, 106, 10.1016/j.micromeso.2014.11.003 Mutisya, 2017, Molecular simulations of cement based materials: A comparison between first principles and classical force field calculations, Comput. Mater. Sci., 138, 392, 10.1016/j.commatsci.2017.07.009 Hou, 2014, Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite, Microporous Mesoporous Mater., 195, 9, 10.1016/j.micromeso.2014.04.011 Yoon, 2014, Estimation of the thermal properties of hardened cement paste on the basis of guarded heat flow meter measurements, Thermochim. Acta, 588, 1, 10.1016/j.tca.2014.04.015 Xu, 2000, Effect of sand addition on the specific heat and thermal conductivity of cement, Cem. Concr. Res., 30, 59, 10.1016/S0008-8846(99)00206-9 Bentz, 2007, Transient plane source measurements of the thermal properties of hydrating cement pastes, Mater. Constr. Mater. Struct., 40, 1073, 10.1617/s11527-006-9206-9 Qomi, 2015, Physical origins of thermal properties of cement paste, Phys. Rev. Appl., 3 2012 Gobakis, 2015, Development and analysis of advanced inorganic coatings for buildings and urban structures, Energy Build., 89, 196, 10.1016/j.enbuild.2014.10.081 Bhutta, 2012, Evaluation of high-performance porous concrete properties, Constr. Build. Mater., 31, 67, 10.1016/j.conbuildmat.2011.12.024 Wang, 2020, Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength, Mater. Chem. Phys., 240, 10.1016/j.matchemphys.2019.122190 Jin, 2016, Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content, Int. J. Heat Mass Transfer, 92, 589, 10.1016/j.ijheatmasstransfer.2015.08.103 Mishra, 2017, Cemff: A force field database for cementitious materials including validations, applications and opportunities, Cem. Concr. Res., 102, 68, 10.1016/j.cemconres.2017.09.003 Lau, 2018, Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges, Composites Part B, 143, 282, 10.1016/j.compositesb.2018.01.014 Cygan, 2004, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B, 108, 1255, 10.1021/jp0363287 Heinz, 2013, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field, Langmuir, 29, 1754, 10.1021/la3038846 Freeman, 2007, New forcefields for modeling biomineralization processes, J. Phys. Chem. C, 111, 11943, 10.1021/jp071887p Duin, 2001, Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u Shahsavari, 2011, Empirical force fields for complex hydrated calcio-silicate layered materials, Phys. Chem. Chem. Phys., 13, 1002, 10.1039/C0CP00516A Tavakoli, 2016, Molecular dynamics study on the mechanical properties of portland cement clinker phases, Comput. Mater. Sci., 119, 65, 10.1016/j.commatsci.2016.03.043 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Bowers, 2009, Natural abundance 43Ca NMR spectroscopy of tobermorite and jennite: Model compounds for C-S-H, J. Am. Ceram. Soc., 92, 545, 10.1111/j.1551-2916.2008.02906.x Green, 1954, Markoff random processes and the statistical mechanics of time-dependent phenomena, II. Irreversible processes in fluids, J. Chem. Phys., 22, 398, 10.1063/1.1740082 Kubo, 1957, Statistical–mechanical theory of irreversible processes, II. Response to thermal disturbance, J. Phys. Soc. Japan, 12, 1203, 10.1143/JPSJ.12.1203 Müller-Plathe, 1997, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys., 106, 6082, 10.1063/1.473271 Gu, 2018, Effect of strain on thermal conductivity of amorphous silicon dioxide thin films: A molecular dynamics study, Comput. Mater. Sci., 144, 133, 10.1016/j.commatsci.2017.12.016 Coquil, 2011, Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica, Int. J. Heat Mass Transfer, 54, 4540, 10.1016/j.ijheatmasstransfer.2011.06.024 Zhu, 2018, Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study, Sci. Rep., 8, 10537, 10.1038/s41598-018-28925-6 Wang, 2016, Tunable thermal transport and mechanical properties of graphene heterojunction, Phys. Chem. Chem. Phys., 18, 24210, 10.1039/C6CP02927B Wu, 2013, Computational thermal homogenization of concrete, Cem. Concr. Compos., 35, 59, 10.1016/j.cemconcomp.2012.08.026 Cahill, 1994, Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings, Appl. Phys. Lett., 65, 309, 10.1063/1.112355 2009 Santos, 2003, Effect of moisture and porosity on the thermal properties of a conventional refractory concrete, J. Eur. Ceram. Soc., 23, 745, 10.1016/S0955-2219(02)00158-9 Batool, 2015 Gencel, 2013, Modeling of thermal conductivity of concrete with vermiculite using by artificial neural networks approaches, Exp. Heat Transf., 26, 360, 10.1080/08916152.2012.669810 Constantinides, 2007, The nanogranular nature of C-S-H, J. Mech. Phys. Solids, 55, 64, 10.1016/j.jmps.2006.06.003 Hansen, 1982, Thermal properties of hardening cement paste, 23 Mounanga, 2004, Experimental study and modeling approaches for the thermal conductivity evolution of hydrating cement paste, Adv. Cem. Res., 16, 95, 10.1680/adcr.2004.16.3.95 Yu, 2019, Formation and characterization of ceramic coating from alumino silicate mineral powders in the matrix of cement composite on the concrete wall, Mater. Chem. Phys., 227, 211, 10.1016/j.matchemphys.2019.02.012 Ri, 2018 Ukrainczyk, 2010, Thermal properties of hydrating calcium aluminate cement pastes, Cem. Concr. Res., 40, 128, 10.1016/j.cemconres.2009.09.005 Yu, 1999, Thermal dehydration of tobermorite and jennite, Concr. Sci. Eng., 1, 185 Xianzhi, 2019, Study on thermal conductivity of cement with thermal conductive materials in geothermal well, Geothermics, 81, 1, 10.1016/j.geothermics.2019.04.001 Wang, 2017, An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure, Constr. Build. Mater., 148, 148, 10.1016/j.conbuildmat.2017.05.068 Khaliq, 2011, Thermal and mechanical properties of fi ber reinforced high performance self-consolidating concrete at elevated temperatures, Cem. Concr. Res., 41, 1112, 10.1016/j.cemconres.2011.06.012