Heat transfer enhancement by using nanofluids in forced convection flows
Tài liệu tham khảo
Ahuja, 1982, Thermal design of a heat exchanger employing laminar flow of particle suspensions, Int. J. Heat Mass Transfer, 25, 725, 10.1016/0017-9310(82)90179-X
Avila, 1995, Analysis of the heat transfer coefficient in a turbulent particle pipe flow, Int. J. Heat Mass Transfer, 38, 1923, 10.1016/0017-9310(94)00321-L
Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062
Boothroyd, 1970, Fully developed heat transfer to a gaseous suspension of particles flowing turbulently in duct of different size, J. Mech. Eng. Sci., 12, 191, 10.1243/JMES_JOUR_1970_012_034_02
Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Choi, S.U.-S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publications FED-vol. 231/MD-vol. 66, pp. 99–105.
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080
Drew, 1999
Eastman, 1999, Novel thermal properties of nanostructured materials, J. Metastable Nanocryst. Mater., 2, 629, 10.4028/www.scientific.net/JMNM.2-6.629
Eastman, 2001, Anomalously increase effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Eckert, 1972
Gupte, 1995, Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension, Int. J. Heat Mass Transfer, 38, 2945, 10.1016/0017-9310(95)00060-M
Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, I & EC Fundamentals, 1, 187, 10.1021/i160003a005
Heaton, 1964, Heat transfer in annular passages simultaneous development of velocity and temperature fields in laminar flow, Int. J. Heat Mass Transfer, 7, 763, 10.1016/0017-9310(64)90006-7
Hornbeck, R.W., 1965. An all-numerical method for heat transfer in the inlet of a tube. ASME paper No. 65-WA/HT-36.
Jeffrey, 1973, Conduction through a random suspension of spheres, Proc. R. Soc. Lond., Series A, 335, 355, 10.1098/rspa.1973.0130
Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2
Kurosaki, Y., Murasaki, T., 1986. Study on heat transfer mechanism of a gas–solid suspension impinging jet (effect of particle size and thermal properties). In: Proceedings of the 8th International Heat Transfer Conference, vol. 5, pp. 2587–2592.
Lee, S., Choi, S.U.S., 1996. Application of metallic nanoparticle suspensions in advanced cooling systems. ASME Publications PVP-vol. 342/MD-vol. 72, pp. 227–234.
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978
Li, Q., Xuan, Y., 2002. Convective heat transfer performances of fluids with nano-particles. In: Proc. 12th Int. Heat Transfer Conference, Grenoble, France, pp. 483–488.
Maïga, S.E.B., 2004. Heat transfer of nanofluids in a uniformly heated tube (Étude numérique du tranfert thermique des ‘nanofluides’ dans un tuyau chauffé uniformément à la paroi). Master of Engineering Thesis, Faculty of Engineering, Université de Moncton, Moncton, NB, Canada, 96p.
Maïga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlatt. Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012
Maïga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., 2004b. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids. In: Proc. CHT-04 ICHMT Int. Symposium Advances Computational Heat Transfer, April 19–24 Norway, Paper No. CHT-04-101, 25p.
Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei (in Japanese), 4, 227, 10.2963/jjtp.7.227
Maxwell, 1904
McGinn, 1956, Observations on the radial flow of water between fixed parallel plates, Appl. Sci. Res., Section A, 5, 255, 10.1007/BF03184956
Michaelides, 1986, Heat transfer in particulate flows, Int. J. Heat Mass Transfer, 29, 265, 10.1016/0017-9310(86)90233-4
Mochizuki, 1986, Local heat transfer performance and mechanisms in radial flow between parallel disks, J. Thermophys., 1, 112, 10.2514/3.13
Murray, 1994, Local enhancement of heat transfer in a particulate cross flow—I. Heat transfer Mechanisms, Int. J. Multiphase Flow, 20, 493, 10.1016/0301-9322(94)90023-X
Nguyen, C.T., 1988. Convection mixte en régime laminaire dans un tuyau incliné soumis à un flux de chaleur constant à la paroi. Ph.D. thesis, Université de Sherbrooke, Québec, Canada.
Ohara, 2000, Intermolecular energy transfer at a solid–liquid interface, Microscale Thermophys. Eng., 4, 189, 10.1080/10893950050148142
Orfi, J., 1995. Convection mixte laminaire dans un tuyau incliné: développement simultané et phénomène de bifurcation. Ph.D. thesis, Université de Sherbrooke, Québec, Canada.
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experiment. Heat Transfer, 11, 151, 10.1080/08916159808946559
Palm, S.J., 2004. Heat transfer enhancement by using nanofluids in a radial flow cooling system. Master of Engineering Thesis, Faculty of Engineering, Université de Moncton, Moncton, NB, Canada, in press.
Palm, S.J., Roy, G., Nguyen, C.T., 2004. Heat transfer enhancement in a radial flow cooling system using nanofluids. In: Proceedings of the CHT-04 ICHMT International Symposium on Advances Computational Heat Transfer, April 19–24 Norway, Paper No. CHT-04-121, 18p.
Patankar, 1980
Petukhov, 1969, Heat transfer in tubes with viscous-gravity flow, Heat Transfer—Sov. Res., 1, 24
Roy, 2004, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlatt. Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011
Sato, 1998, Direct numerical simulation of heat transfer by solid particles suspended in homogeneous isotropic turbulence, Int. J. Heat Fluid Flow, 19, 187, 10.1016/S0142-727X(97)10023-6
Sohn, 1981, Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity Couette flow experiment, J. Heat Transfer, 103, 45, 10.1115/1.3244428
Szeri, 1983, Flow between rotating disks, Part 1: Basic flow, J. Fluid Mech., 134, 103, 10.1017/S0022112083003250
Wang, 1999, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4
Warsi, 1999
Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420