Low-melting phosphate glasses as flame-retardant synergists to epoxy: Barrier effects vs flame retardancy

Polymer Degradation and Stability - Tập 185 - Trang 109495 - 2021
Wei Liu1,2, Ye‐Tang Pan3,1, Jing Zhang1,4, Lu Zhang5,1, José Serafín Moya2, Belén Cabal2, De‐Yi Wang1
1IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain
2Nanomaterials and Nanotechnology Research Centre (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega, 4-6, 33940 El Entrego, Asturias, Spain
3Beijing Institute of Technology, South Zhongguancun Street, 5, Haidian, 100081, Beijing, PR China
4Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain
5College of Mechanical and Electrical Engineering, Central South University, 410083, Changsha, Hunan, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azeez, 2013, Epoxy clay nanocomposites - processing, properties and applications: a review, Compos. Part B, 45, 308, 10.1016/j.compositesb.2012.04.012

Jin, 2015, Synthesis and application of epoxy resins: a review, J. Ind. Eng. Chem., 29, 1, 10.1016/j.jiec.2015.03.026

Levchik, 2004, Thermal decomposition, combustion and flame-retardancy of epoxy resins - a review of the recent literature, Polym. Int., 53, 1901, 10.1002/pi.1473

Pan, 2017, Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites, Chem. Eng. J., 330, 1222, 10.1016/j.cej.2017.08.059

Zhao, 2016, Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame-retardant mechanism and mechanical properties, RSC Adv., 6, 59226, 10.1039/C6RA13168A

Wan, 2015, A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties, J. Mater. Chem. A, 3, 21907, 10.1039/C5TA02939B

Wang, 2015, Renewable cardanol-based surfactant modified layered double hydroxide as a flame-retardant for epoxy resin, ACS Sustain. Chem. Eng., 3, 3281, 10.1021/acssuschemeng.5b00871

Chen, 2009, Mild processing and characterization of silica epoxy hybrid nanocomposite, Polymer, 50, 6265, 10.1016/j.polymer.2009.11.002

Das, 2011, Rubber-clay nanocomposites: some recent results, 239, 85

Levchik, 1996, Mechanistic study of thermal behaviour and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system, Polym. Degrad. Stab., 54, 317, 10.1016/S0141-3910(96)00057-2

Schartel, 2017, Flame retardancy synergism in polymers through different inert fillers’ geometry, Polym. Eng. Sci., 57, 1099, 10.1002/pen.24485

Kroenke, 1986, Low-melting sulphate glasses and glass-ceramics, and their utility as fire and smoke retarder additives for poly(vinyl chloride), J. Mater. Sci., 21, 1123, 10.1007/BF00553241

Marosi, 2002, Ceramic precursor in flame-retardant systems, Polym. Degrad. Stab., 77, 259, 10.1016/S0141-3910(02)00057-5

Guo, 2017, Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites, Polym. Degrad. Stab., 136, 71, 10.1016/j.polymdegradstab.2016.12.012

Niida, 2003, Preparation and structure of organic-inorganic hybrid low-melting phosphite glasses from phosphonic acid H3PO3, J. Mater. Res., 18, 1081, 10.1557/JMR.2003.0149

Wu, 2012, Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepree glass, Polym. Eng. Sci., 52, 507, 10.1002/pen.22111

Yu, 2011, Phosphorus and silicon containing low-melting organic-inorganic glasses improve flame retardancy of epoxy/clay composites, Macromol. Mater. Eng., 296, 952, 10.1002/mame.201100014

Yu, 2011, A low melting organic-inorganic glass and its effect on flame retardancy of clay/epoxy composites, Polymer, 52, 2120, 10.1016/j.polymer.2011.03.033

Wu, 2012, Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass, J. Fire Sci., 30, 69, 10.1177/0734904111422417

Liu, 2019, Synthesis, characterization and applications of low temperature melting glasses belonging to P2O5-CaO-Na2O system, Ceram. Int., 45, 12234, 10.1016/j.ceramint.2019.03.133

Fiume, 2020, Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O System, Materials, 13

Uo, 1998, Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses, Biomaterials, 19, 2277, 10.1016/S0142-9612(98)00136-7

Shao, 2014, An efficient mono-component polymeric intumescent flame-retardant for polypropylene: preparation and application, ACS Appl. Mater. Interfaces, 610, 7363, 10.1021/am500789q

Shao, 2014, Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame-retardant for polypropylene, J. Mater. Chem. A, 2, 13955, 10.1039/C4TA02778G

Shao, 2014, Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate, Polym. Degrad. Stab., 106, 88, 10.1016/j.polymdegradstab.2013.10.005