Generalized solitary wave solutions for the Klein–Gordon–Schrödinger equations
Tài liệu tham khảo
Fukuda, 1978, On coupled Klein–Gordon–Schrödinger equations, J. Math. Appl., 66, 358
Shatah, 1983, Stable standing wave of nonlinear Klein–Gordon equation, Commun. Math. Phys., 91, 313, 10.1007/BF01208779
Hayashi, 1987, On the global strong solutions of Klein–Gordon–Schrödinger equations, J. Math. Soc. Japan, 39, 37, 10.2969/jmsj/03930489
Ozawa, 1994, Asymptotic behaviour of solutions for coupled Klein–Gordon–Schrödinger equations, Adv. Stud. Pure Math., 23, 295, 10.2969/aspm/02310295
Ohta, 1996, Stability of stationary sates for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal., 27, 455, 10.1016/0362-546X(95)00017-P
Guo, 1997, Attractor for dissipative Klein–Gordon–Schrödinger equations in R-3, J. Differential Equations, 136, 356, 10.1006/jdeq.1996.3242
Wang, 2000, On weakly convergent sequences in banach function spaces and the initial-boundary value problems for non-linear Klein–Gordon–Schrödinger equations, Math. Methods Appl. Sci., 23, 1655, 10.1002/1099-1476(200012)23:18<1655::AID-MMA179>3.0.CO;2-2
Wang, 2003, The periodic wave solutions for the Klein–Gordon–Schrödinger equations, Phys. Lett. A, 318, 84, 10.1016/j.physleta.2003.07.026
Darwish, 2004, A series of new explicit exact solutions for the coupled Klein–Gordon–Schrödinger equations, Chaos Soliton Fractals, 20, 609, 10.1016/S0960-0779(03)00419-3
Li, 2005, The periodic wave solutions for the (3+1)-dimensional Klein–Gordon–Schrödinger equations, Chaos, Solitons and Fractals, 25, 629, 10.1016/j.chaos.2004.11.028
Santanu, 2008, An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 13, 1311, 10.1016/j.cnsns.2006.12.010
Yomba, 2004, On exact solutions of the coupled Klein–Gordon–Schrödinger and the complex coupled KdV equations using mapping method, Chaos Solitons Fractals, 21, 209, 10.1016/j.chaos.2003.10.028
Xia, 2002, The exact solitary wave solution for the Klein–Gordon–Schrödinger equations, Appl. Math. Mech., 23, 58, 10.1007/BF02437730
Liu, 2004, The periodic solutions for a class of coupled nonlinear Klein–Gordon equations, Phys. Lett. A, 323, 415, 10.1016/j.physleta.2004.02.023
He, 2006
He, 2006, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20, 1141, 10.1142/S0217979206033796
Ghorbani, 2007, He’s homotopy perturbation method for calculating adomian polynomials, Int. J. Nonlinear Sci. Num. Simul., 8, 229, 10.1515/IJNSNS.2007.8.2.229
Odibat, 2006, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Num. Simul., 7, 27, 10.1515/IJNSNS.2006.7.1.27
Bildik, 2006, The use of variational iteration method differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci. Num. Simul., 7, 65, 10.1515/IJNSNS.2006.7.1.65
Ozis, 2007, A comparative study of He’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities, Int. J. Nonlinear Sci. Num. Simul., 8, 243, 10.1515/IJNSNS.2007.8.2.243
Belendez, 2007, Application of He’s homotopy perturbation method to the Duffing-harmonic oscillator, Int. J. Nonlinear Sci. Num. Simul., 8, 79, 10.1515/IJNSNS.2007.8.1.79
Ariel, 2006, Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. Nonlinear Sci. Num. Simul., 7, 399, 10.1515/IJNSNS.2006.7.4.399
He, 2006, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700, 10.1016/j.chaos.2006.03.020
He, 2007, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fractals, 34, 1421, 10.1016/j.chaos.2006.05.072
Wu, 2007, Solitary solutions periodic solutions and compacton-like solutions using the Exp-function method, Comput. Math. Appl., 54, 966, 10.1016/j.camwa.2006.12.041
Wu, 2008, Exp-function method and its application to nonlinear equations, Chaos Solitons Fractals, 38, 903, 10.1016/j.chaos.2007.01.024
Zhang, 2008, Exp-function method exactly solving a KdV equation with forcing term, Appl. Math. Comput., 197, 128, 10.1016/j.amc.2007.07.041
Zhu, 2007, Exp-function method for the Hybrid-Lattice system, Int. J. Nonlinear Sci. Num. Simul., 8, 461