Solvent effects on the heterogeneous growth of TiO2 nanostructure arrays by solvothermal synthesis

Catalysis Today - Tập 360 - Trang 275-283 - 2021
Xingxu Lu1,2, Meilin Li3, Son Hoang1,2, Steven L. Suib2,3, Pu-Xian Gao1,2
1Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136, USA
2Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
3Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA

Tài liệu tham khảo

Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013 Mor, 2006, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 90, 2011, 10.1016/j.solmat.2006.04.007 Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535 Roy, 2011, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed. Engl., 50, 2904, 10.1002/anie.201001374 Chen, 2010, Large scale photochemical synthesis of M@ TiO2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect, Nano Res., 3, 244, 10.1007/s12274-010-1027-z Guo, 2013, Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability, Nano Energy, 2, 873, 10.1016/j.nanoen.2013.03.004 Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Park, 2006, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett., 6, 24, 10.1021/nl051807y Wang, 2011, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett., 11, 3026, 10.1021/nl201766h Kavan, 1996, Electrochemical and photoelectrochemical investigation of single-crystal anatase, J. Am. Chem. Soc., 118, 6716, 10.1021/ja954172l Huang, 1997, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 101, 2576, 10.1021/jp962377q Li, 2011, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template‐free self‐assembly, Adv. Funct. Mater., 21, 1717, 10.1002/adfm.201002295 Bach, 1998, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395, 583, 10.1038/26936 Park, 2000, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B, 104, 8989, 10.1021/jp994365l Lin, 1997, Gas-sensing properties of nanocrystalline TiO2, Nanostruct. Mater., 9, 747, 10.1016/S0965-9773(97)00161-X Bao, 2008, New nanostructured TiO2 for direct electrochemistry and glucose sensor applications, Adv. Funct. Mater., 18, 591, 10.1002/adfm.200700728 Guo, 2012, Synthesis, characterization and CO oxidation of TiO2/(La,Sr)MnO3 composite nanorod array, Catal. Today, 184, 178, 10.1016/j.cattod.2011.10.027 Hoang, 2019, High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs, Catal. Today, 320, 2, 10.1016/j.cattod.2017.11.019 Lu, 2019, Ion-Exchange Loading Promoted Stability of Platinum Catalysts Supported on Layered Protonated Titanate-Derived Titania Nanoarrays, ACS Appl. Mater. Interfaces, 11, 21515, 10.1021/acsami.9b04378 Lu, 2018, Nanostructured TiO2 support effect on hydrothermal stability of platinum based catalysts, Microsc. Microanal., 24, 1642, 10.1017/S1431927618008693 Avila, 2005, Monolithic reactors for environmental applications: a review on preparation technologies, Chem. Eng. J., 109, 11, 10.1016/j.cej.2005.02.025 Tomašić, 2006, State-of-the-art in the monolithic catalysts/reactors, Appl. Catal. A Gen., 311, 112, 10.1016/j.apcata.2006.06.013 Williams, 2001, Monolith structures, materials, properties and uses, Catal. Today, 69, 3, 10.1016/S0920-5861(01)00348-0 Du, 2018, Cu-Decorated ZnO Nanorod Array Integrated Structured Catalysts for Low-Pressure CO2 Hydrogenation to Methanol, Adv. Mater. Interfaces, 5 Wang, 2018, Mesoporous perovskite nanotube-array enhanced metallic-state platinum dispersion for low temperature propane oxidation, Chem. Cat. Chem., 10, 2184 Shi, 2019, Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2-x nanosheet array, Appl. Catal. B, 246, 312, 10.1016/j.apcatb.2018.12.078 Tang, 2019, Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst, Appl. Catal. B, 245, 623, 10.1016/j.apcatb.2019.01.028 Tian, 2019, Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction, Appl. Catal. B, 253, 196, 10.1016/j.apcatb.2019.04.036 Weng, 2017, Nano-array integrated structured catalysts: a new paradigm upon conventional wash-coated monolithic catalysts?, Catalysts, 7, 253, 10.3390/catal7090253 Lu, 2018, Direct synthesis of conformal layered protonated titanate nanoarray coatings on various substrate surfaces boosted by low-temperature microwave-assisted hydrothermal synthesis, ACS Appl. Mater. Interfaces, 10, 35164, 10.1021/acsami.8b11801 Tang, 2017, Scalable integration of highly uniform MnxCo3‐xO4 nano‐sheet array onto ceramic monolithic substrates for low temperature propane oxidation, Chem. Cat. Chem., 9, 4112 Wang, 2017, Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization, Cryst. Eng. Comm., 19, 5128, 10.1039/C7CE00921F Du, 2018, Rational design, synthesis and evaluation of ZnO nanorod array supported Pt:La0.8 Sr0.2 MnO3 lean NOx traps, Appl. Catal. B, 236, 348, 10.1016/j.apcatb.2018.05.007 Wen, 2018, Template-guided programmable Janus heteronanostructure arrays for efficient plasmonic photocatalysis, Nano Lett., 18, 4914, 10.1021/acs.nanolett.8b01675 Tang, 2019, Pre-surface leached cordierite honeycombs for MnxCo3-xO4 nano-sheet array integration with enhanced hydrocarbons combustion, Catal. Today, 320, 196, 10.1016/j.cattod.2017.10.045 Tang, 2019, Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts, Appl. Catal. B, 256, 10.1016/j.apcatb.2019.117859 Feng, 2008, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications, Nano Lett., 8, 3781, 10.1021/nl802096a Wu, 2009, Dielectric constant controlled solvothermal synthesis of a TiO2 photocatalyst with tunable crystallinity: a strategy for solvent selection, Eur. J. Inorg. Chem., 2009, 2789, 10.1002/ejic.200900199 Wu, 2013, Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method, J. Nanopart. Res., 15, 1686, 10.1007/s11051-013-1686-2 Xu, 2017, Solvent effects on microstructures and properties of three-dimensional hierarchical TiO2 microsphere structures synthesized via solvothermal approach, J. Solid State Chem., 253, 167, 10.1016/j.jssc.2017.05.001 Zhou, 2011, Solvent-controlled synthesis of three-dimensional TiO2 nanostructuresvia a one-step solvothermal route, Cryst. Eng. Comm., 13, 2294, 10.1039/c0ce00793e Zhou, 2014, Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route, J. Nanopart. Res., 16, 2466, 10.1007/s11051-014-2466-3 Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation: Low Temperature Oxidation Catalyst Test Protocol, U.S. DRIVE Advanced Combustion and Emission Control (ACEC) Tech Team, Low Temperature Aftertreatment (LTAT) Working Group, http://cleers.org/ltat-protocols, April 2015. Gao, 2009, Crystal structures of titanate nanotubes: a Raman scattering study, Inorg. Chem., 48, 1423, 10.1021/ic801508k Hosono, 2004, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions, J. Am. Chem. Soc., 126, 7790, 10.1021/ja048820p Thommes, 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 1051, 10.1515/pac-2014-1117 Lin, 2014, 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency, Sci. Rep., 4, 5769, 10.1038/srep05769 Reichardt, 2011 Xu, 2011, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013, 10.1007/s12274-011-0160-7 Rappé, 2019, Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation, storage, three-way, and NH3-SCR catalyst test protocols, Emiss. Control Sci. Technol., 5, 183, 10.1007/s40825-019-00120-7