Negative VCC in MIM capacitors: modeling and experiments

Springer Science and Business Media LLC - Tập 17 - Trang 458-462 - 2017
Aparna Sanal1, P. Sathyanarayanan1, V. Velmurugan1, D. Kannadassan1
1Centre for Nanotechnology Research, VIT University, Vellore, India

Tóm tắt

After the advent of Cu and TiN metallization in high-speed and high-density radio frequency and analog/mixed-signal integrated circuits, new challenges have emerged in achieving low voltage coefficient of capacitance (VCC) in metal-insulation-metal capacitor (MIM) technology. While single layer high-k dielectric MIM capacitors fail to provide low VCC ( $$<100$$ ppm/V $$^{2}$$ ), stacked high-k/ $$\hbox {SiO}_{2}$$ dielectrics show a promising solution as the negative VCC of $$\hbox {SiO}_{2}$$ cancels the positive VCC of high-k materials. To understand the mechanism and origin of negative VCC, a unified analytical model of negative VCC with experimental validation is presented in this paper. This model would be a very useful tool to design high performance MIM capacitors with ultra-low VCC for radio frequency and analog/mixed-signal integrated circuits.

Tài liệu tham khảo

Tan, K.S., Kiriaki, S., De Wit, M., Fattaruso, J.W., Tsay, C.Y., Matthews, W.E., Hester, R.K.: Error correction techniques for high-performance differential A/D converters. IEEE J. Solid State Circuits 25(6), 1318 (1990) Iida, T., Nakahara, M., Gotoh, S., Akiba, H.: In: IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 18.5/1–18.5/4 (1990) Onge, S., Franz, S.G., Puttlitz, A.F., Kalinoski, A., Johnson, B.E., El-Kareh, B.: Design of precision capacitors for analog applications. IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 1064 (1992) Ng, C.H., Ho, C.S., Chu, S.F.S., Sun, S.C.: MIM capacitor integration for mixed-signal–RF applications. IEEE Trans. Electron. Devices 52(7), 1399 (2005) Lee, H.S., Hodges, D.: Accuracy considerations in self-calibrating A/D converters. IEEE Trans. Circuits Syst. 32(6), 590 (1985) Juan, Y.H., Huang, H.Y., Lai, S.C., Juang, W.H., Lee, S.Y., Luo, C.H.: A distortion cancelation technique with the recursive DFT method for successive approximation analog-to-digital converters. IEEE Trans. Circuits Syst. II Express Briefs 63(2), 146 (2016) ITRS: International Technology Roadmap for Semiconductor 2010. Report on RF and analog-mixed signal design (2013) Chen, S., Lai, C., Chin, A., Hsieh, J., Liu, J.: High-density MIM capacitors using \(\text{ Al }_{2}\text{ O }_{3}\) and AlTiO\(_{x}\) dielectrics. IEEE Electron Device Lett. 23(4), 185 (2002) Chiang, K.C., Lai, C.H., Chin, A., Kao, H.L., McAlister, S.P., Chi, C.C.: Very high density RF MIM capacitor compatible with VLSI. In: IEEE MTT-S International Microwave Symposium Digest, vol. 2005, pp. 287–290. IEEE, Long Beach, CA, USA (2005) Hu, H., Zhu, C., Lu, Y., Li, M., Cho, B.J., Choi, W.: A high performance MIM capacitor using \(\text{ HfO }_{2}\) dielectrics. IEEE Electron Device Lett. 23, 514 (2002) Kannadassan, D., Karthik, R., Shojaei Baghini, M., Mallick, P.: Modeling the voltage nonlinearity of high-k MIM capacitors. Solid State Electron. 91, 112 (2014) Kim, Y., Lee, Y.G., Kim, M., Kang, C.G., Jung, U., Kim, J.J., Song, S.C., Blatchford, J., Kirkpatrick, B., Niimi, H., Lim, K.Y., Lee, B.H.: Capacitance analysis of highly leaky Al\(_2\)O\(_3\) MIM capacitors using time domain reflectometry. IEEE Electron Device Lett. 33(9), 1303 (2012) Jorel, C., Valle, C., Gonon, P., Gourvest, E., Dubarry, C., Defay, E.: High performance metal-insulator-metal capacitor using a SrTiO\(_3\)/ZrO\(_2\) bilayer. Appl. Phys. Lett. 94(25), 253502 (2009) Kim, S.J., Cho, B.J., Li, M., Ding, S., Zhu, C., Yu, M.B., Narayanan, B., Chin, A., Kwong, D.: Improvement of voltage linearity in high-k MIM capacitors using \(\text{ HfO }_{2}\)–\(\text{ SiO }_{2}\) stacked dielectric. IEEE Electron Device Lett. 25(8), 538 (2004) Yang, J., Chen, J., Wise, R., Steinmann, P., Yu, M., Kwong, D., Li, M., Yeo, Y., Zhu, C.: Effective modulation of quadratic voltage coefficient of capacitance in MIM capacitors using Sm\(_2\)O\(_3\)SiO\(_2\) dielectric stack. IEEE Electron Device Lett. 30(5), 460 (2009) Blonkowski, S.: Nonlinear capacitance variations in amorphous oxide metal-insulator-metal structures. Appl. Phys. Lett. 91(17), 172903-1–172903-4 (2007) Phung, T.H., Steinmann, P., Wise, R., Yeo, Y., Zhu, C.: Modeling the negative quadratic VCC of \(\text{ SiO }_{2}\) in MIM capacitor. IEEE Electron Device Lett. 32(12), 1671 (2011) Lin, C.C., Wu, Y.H., Jiang, R.S., Yu, M.T.: MIM capacitors based on ZrTiO\(_{x}\)/BaZryTi\(_{1-{y}}\)O\(_{3}\) featuring record-low VCC and excellent reliability. IEEE Electron Device Lett. 34(11), 1418 (2013) Maex, K., Baklanov, M., Shamiryan, D., Iacopi, F., Brongersma, S., Yanovitskaya, Z.: Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793 (2003) Dumin, D.: Oxide Reliability: A Summary of Silicon Oxide Wearout, Breakdown, and Reliability, vol. 23. World Scientific, Singapore (2002) Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1986) Gubin, S.P.: Magnetic Nanoparticles. Wiley, New York (2009) Talebian, E., Talebian, M.: A general review on the derivation of Clausius–Mossotti relation. Optik 124(16), 2324 (2013) Kim, D., Hong, J., Park, Y., Kim, K.: The origin of oxygen vacancy induced ferromagnetism in undoped TiO\(_2\). J. Phys. Condens. Matter 21(19), 195405-1–195405-4 (2009)