A time-dependent phenomenological model for cell mechano-sensing

Biomechanics and Modeling in Mechanobiology - Tập 13 - Trang 451-462 - 2013
Carlos Borau1, Roger D. Kamm2, José Manuel García-Aznar1
1Department of Mechanical Engineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza Campus Rio Ebro, Saragossa, Spain
2Departments of Biological and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments have been conducted to understand cell rigidity-sensing properties under known conditions of the extracellular environment, opening new possibilities for modeling this active behavior. In this work, we provide a physics-based constitutive model taking into account the main structural components of the cell to reproduce its most significant contractile properties such as the traction forces exerted as a function of time and the extracellular stiffness. This model shows how the interplay between the time-dependent response of the acto-myosin contractile system and the elastic response of the cell components determines the mechano-sensing behavior of single cells.

Tài liệu tham khảo

Besser A, Schwarz US (2010) Hysteresis in the cell response to time-dependent substrate stiffness. Biophys J 99(1):L10–12. doi:10.1016/j.bpj.2010.04.008 Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100(16):9274–9279 Borau C, Kamm RD, García-Aznar JM (2011) Mechano-sensing and cell migration: a 3D model approach. Phys Biol 8(6):066008 Borau C, Kim T, Bidone T, Kamm RD, García-Aznar JM (2012) Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks. Plos One 7(11): e49174 Crow A, Webster KD, Hohlfeld E, Ng WP, Geissler P, Fletcher DA (2012) Contractile equilibration of single cells to step changes in extracellular stiffness. Biophys J 102(3):443–451. doi:10.1016/j.bpj.2011.11.4020 Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103(38):14015–14020 Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143 Foucard L, Vernerey FJ (2012) A thermodynamical model for stress-fiber organization in contractile cells. Appl Phys Lett 100(1):13702–137024. doi:10.1063/1.3673551 Fouchard J, Mitrossilis D, Asnacios A (2011) Acto-myosin based response to stiffness and rigidity sensing. Cell Adh Migr 5(1):16–19. doi:10.4161/cam.5.1.13281 Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A, Roca-Cusachs P, Sheetz MP, Hone J (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci USA 109(14):5328–5333. doi:10.1073/pnas.1119886109 Guo B, Guilford WH (2006) Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc Natl Acad Sci USA 103(26):9844–9849 Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318 Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107. doi:10.1016/j.ceb.2006.12.002 Kobayashi T, Sokabe M (2010) Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 22(5):669–676. doi:10.1016/j.ceb.2010.08.023 Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41(1):75–97. doi:10.1146/annurev-matsci-062910-100351 Lim CT, Zhou EH, Quek ST (2006) Mechanical models for living cells—a review. J Biomech 39(2):195–216. doi:10.1016/j.jbiomech.2004.12.008 Marcq P, Yoshinaga N, Prost J (2011) Rigidity sensing explained by active matter theory. Biophys J 101(6):L33–35. doi:10.1016/j.bpj.2011.08.023 McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS (2009) Simulation of the contractile response of cells on an array of micro-posts. Philos Trans R Soc A 367(1902):3477–3497 Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106(43):18243–18248 Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A, Saint-Jean M, Asnacios A (2010) Real-time single-cell response to stiffness. Proc Natl Acad Sci USA 107(38):16518–16523 Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 58(1–2):105–134. doi:10.1007/s00285-008-0182-2 Moreo P, Garcia-Aznar JM, Doblare M (2008) Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater 4(3):613–621 Ronan W, Deshpande VS, McMeeking RM, McGarry JP (2012) Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J Mech Behav Biomed Mater 14C:143–157. doi:10.1016/j.jmbbm.2012.05.016 Schafer A, Radmacher M (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1(3):273–280 Schwarz US, Erdmann T, Bischofs IB (2006) Focal adhesions as mechanosensors: the two-spring model. Biosystems 83(2–3):225–232 Soares e Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH (2011) Active multistage coarsening of actin networks driven by myosin motors. Proc Natl Acad Sci USA 108(23):9408–9413. doi:10.1073/pnas.1016616108 Taber LA, Shi Y, Yang L, Bayly PV (2011) A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization. J Mech Mater Struct 6(1–4):569–589. doi:10.2140/jomms.2011.6.569 Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 109(18):6933–6938. doi:10.1073/pnas.1117810109 Ujihara Y, Nakamura M, Miyazaki H, Wada S (2012) Contribution of actin filaments to the global compressive properties of fibroblasts. J Mech Behav Biomed Mater 14C:192–198. doi:10.1016/j.jmbbm.2012.05.006 Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699. doi:10.1016/j.jmbbm.2011.05.022 Wang S, Wolynes PG (2012) Active contractility in actomyosin networks. Proc Natl Acad Sci USA 109(17):6446–6451. doi:10.1073/pnas.1204205109 Webster KD, Crow A, Fletcher DA (2011) An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity. PLoS One 6(3):e17807 Yamaoka H, Matsushita S, Shimada Y, Adachi T (2012) Multiscale modeling and mechanics of filamentous actin cytoskeleton. Biomech Model Mechanobiol 11(3–4):291–302. doi:10.1007/s10237-011-0317-z Zemel A, De R, Safran SA (2011) Mechanical consequences of cellular force generation. Curr Opin Solid State Mater 15(5):169–176. doi:10.1016/j.cossms.2011.04.001 Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA (2010) Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6(6):468–473