Sp2 carbon embedded in Al-6061 and Al-7075 alloys in the form of crystalline graphene nanoribbons
Tài liệu tham khảo
Qiu, 1994, Solubility of carbon in liquid Al and stability of Al4C3, J. Alloy Compd., 216, 55, 10.1016/0925-8388(94)91042-1
Subramaniam, 2013, One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite, Nat. Commun., 4, 2202, 10.1038/ncomms3202
Reed, 2012, Graphene-enabled silver nanoantenna sensors, Nano Lett., 12, 4090, 10.1021/nl301555t
Jeyasimman, 2014, Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes, Powder Technol., 258, 189, 10.1016/j.powtec.2014.03.039
Bastwros, 2014, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Compos Part B-Eng, 60, 111, 10.1016/j.compositesb.2013.12.043
Ogawa, 2015, Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition, Mater. Res. Express, 2, 015601, 10.1088/2053-1591/2/1/015601
Jeon, 2014, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis. Eng. Manuf., 15, 1235, 10.1007/s12541-014-0462-2
Bakshi, 2008, Carbon nanotube reinforced aluminum composite coating via cold spraying, Surf. Coat. Tech., 202, 5162, 10.1016/j.surfcoat.2008.05.042
Laha, 2004, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mat. Sci. Eng. a-Struct, 381, 249, 10.1016/j.msea.2004.04.014
Laha, 2009, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Compos Part a-Appl S, 40, 589, 10.1016/j.compositesa.2009.02.007
Zhao, 2015, Microstructure and mechanical properties of Al/Graphene composite produced by high-pressure torsion, Adv. Eng. Mater., 17, 976, 10.1002/adem.201400375
Tang, 2004, Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum, Carbon, 42, 3260, 10.1016/j.carbon.2004.07.024
Bartolucci, 2011, Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 528, 7933, 10.1016/j.msea.2011.07.043
Liao, 2011, Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technol., 208, 42, 10.1016/j.powtec.2010.12.001
Salamanca-Riba, 2015, Synthetic crystals of silver with carbon: 3D epitaxy of carbon nanostructures in the silver lattice, Adv. Funct. Mater., 25, 4768, 10.1002/adfm.201501156
Isaacs, 2015, Nanocarbon-copper thin film as transparent electrode, Appl. Phys. Lett., 106, 193108, 10.1063/1.4921263
Forrest, 2012, Novel metal-matrix composites with integrally-bound nanoscale carbon, Nanotech, 2012
Jasiuk, 2013
Brown, 2014, Physical and mechanical characterization of a nanocarbon infused aluminum-matrix composite, Mater. Perform. Charact., 3, 20130023, 10.1520/MPC20130023
Jia, 2011, Graphene edges: a review of their fabrication and characterization, Nanoscale, 3, 86, 10.1039/C0NR00600A
Kosynkin, 2009, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 458, 872, 10.1038/nature07872
Dato, 2008, Substrate-free gas-phase synthesis of graphene sheets, Nano Lett., 8, 2012, 10.1021/nl8011566
Dresselhaus, 2010, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett., 10, 751, 10.1021/nl904286r
Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409, 47, 10.1016/j.physrep.2004.10.006
Ferrari, 2006, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401, 10.1103/PhysRevLett.97.187401
Ferrari, 2004, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. Ser. A, Math. Phys. Eng. Sci., 362, 2477, 10.1098/rsta.2004.1452
Pimenta, 2007, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. PCCP, 9, 1276, 10.1039/B613962K
Kumar, 2012
Tuinstra, 1970, Raman spectrum of graphite, J. Chem. Phys., 53, 1126, 10.1063/1.1674108
Campos-Delgado, 2008, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons, Nano Lett., 8, 2773, 10.1021/nl801316d
Luo, 2007
Domancich, 2014, DFT study on the interaction between atomic aluminum and graphene, Journal of Theoretical and Computational Chem, 13, 1450055, 10.1142/S0219633614500552
Lim, 2011, DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles, J. Phys. Chem. C, 115, 8961, 10.1021/jp2012914
Shimizu, 2011, Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons, Nat. Nanotechnol., 6, 45, 10.1038/nnano.2010.249
Jovanovic, 2014, Raman spectroscopy of graphene nanoribbons synthesized by longitudinal unzipping of multiwall carbon nanotubes, Phys. Scr., T162, 014023, 10.1088/0031-8949/2014/T162/014023
Cong, 2011, Raman characterization of aba- and ABC-stacked trilayer graphene, Acs Nano, 5, 8760, 10.1021/nn203472f
Davis, 1993
Payne, 1992, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, 1045, 10.1103/RevModPhys.64.1045
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Kresse, 1993, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48, 13115, 10.1103/PhysRevB.48.13115
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Chadi, 1973, Special points in the Brillouin zone, Phys. Rev. B, 8, 5747, 10.1103/PhysRevB.8.5747
Jónsson, 1998, Nudged elastic band method for finding minimum energy paths of transitions, Class. Quantum Dyn. Condens. Phsimul. Simul., 1, 385, 10.1142/9789812839664_0016
Maragakis, 2002, Adaptive nudged elastic band approach for transition state calculation, J. Chem. Phys., 117, 4651, 10.1063/1.1495401
Sharia, 2012, Surface-enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylene-tetranitramine, J. Phys. Chem. C, 116, 11077, 10.1021/jp301723j
